Harnessing Deep NNs with Logic Rules

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, Eric Xing School of Computer Science Carnegie Mellon University

Deep NNs

Deep NNs

- heavily rely on massive labeled data
- uninterpretable
- hard to encode human intention/domain knowledge

How humans learn

- learn from *concrete* examples (as DNNs do)
- learn from general knowledge and rich experiences [Minksy 1980; Lake et al., 2015]
 - the past tense of verbs¹:
 - regular verbs –d/-ed

DNNs + knowledge

DNNs + knowledge

- logic rule
 - a flexible declarative language
 - express structured knowledge

DNNs + knowledge

- logic rule
 - a flexible declarative language
 - express structured knowledge
- DNNs + logic rules

Related work

- neural-symbolic system [Garcez et al., 2012]
 - specialized NNs from a rule set to execute reasoning
- learning interpretable hidden layer [Kulkarni et al., 2011; Karaletsos et al., 2016]
 - specialized types of knowledge (e.g., similarity tuples)
- posterior regularization on latent variable models [Ganchev et al., 2010; Liang et al., 2009; Zhu et al., 2014]
 - not directly applicable to NNs
 - or poor performance
- structure compilation/knowledge distillation [Liang et al., 2008; Hinton et al., 2015; Bucilu et al., 2006]
 - pipelined method with CRF/NN ensembles

This work

- enhances *general* types of NNs
- with general types of knowledge expressed as logic rules

This work

- enhances *general* types of NNs
- with general types of knowledge expressed as logic rules
- iterative rule knowledge distillation
 - transfers rule knowledge into NNs
 - generality
 - CNN for sentiment classification
 - RNN for named entity recognition

Rule formulation

- input-target space: (X, Y)
- first-order logic (FOL) rules: (r, λ)
 - $r(X, Y) \in [0,1]$
 - soft logic
 - e.g., $A \& B \coloneqq \max\{A + B 1, 0\}$
 - takes values $\in [0,1]$
 - λ : confidence level of the rule

Rule knowledge distillation

• neural network $p_{\theta}(y|x)$

Rule knowledge distillation

- neural network $p_{\theta}(y|x)$
- train to imitate the outputs of a rule-regularized *teacher* network (i.e. distillation)

Rule knowledge distillation

- neural network $p_{\theta}(y|x)$
- train to imitate the outputs of a rule-regularized *teacher* network (i.e. distillation)

at iteration *t*:

$$\theta^{(t+1)} = \arg \min_{\theta \in \Theta} \frac{1}{N} \sum_{n=1}^{N} (1 - \pi) \ell(\boldsymbol{y}_n, \boldsymbol{\sigma}_{\theta}(\boldsymbol{x}_n)) + \pi \ell(\boldsymbol{s}_n^{(t)}, \boldsymbol{\sigma}_{\theta}(\boldsymbol{x}_n)),$$
balancing parameter
soft prediction of the
teacher network

Teacher network construction

- teacher network: q(Y|X)
 - ullet comes out of p
 - fits the logic rules: $E_q[r(X, Y)] = 1$, with confidence λ

Teacher network construction

- teacher network: q(Y|X)
 - comes out of *p*
 - fits the logic rules: $E_q[r(X, Y)] = 1$, with confidence λ

slack variable

$$\min_{q, \boldsymbol{\xi} \geq 0} \operatorname{KL}(q \| p_{\theta}(\boldsymbol{Y} | \boldsymbol{X})) + C \sum_{l} \xi_{l}$$

s.t. $\lambda_{l}(1 - \mathbb{E}_{q}[r_{l}(\boldsymbol{X}, \boldsymbol{Y})]) \leq \xi_{l}$
 $l = 1, \dots, L$
rule constraints

Teacher network construction

- teacher network: q(Y|X)
 - comes out of *p*
 - fits the logic rules: $E_q[r(X, Y)] = 1$, with confidence λ

$$\min_{q, \boldsymbol{\xi} \geq 0} \operatorname{KL}(q \| p_{\theta}(\boldsymbol{Y} | \boldsymbol{X})) + C \sum_{l} \xi_{l}$$

s.t. $\lambda_{l}(1 - \mathbb{E}_{q}[r_{l}(\boldsymbol{X}, \boldsymbol{Y})]) \leq \xi_{l}$
 $l = 1, \dots, L$
rule constraints

closed-form solution:

Method

$$q^*(\boldsymbol{Y}|\boldsymbol{X}) \propto p_{\theta}(\boldsymbol{Y}|\boldsymbol{X}) \exp\left\{-\sum_l C\lambda_l(1-r_l(\boldsymbol{X},\boldsymbol{Y}))
ight\}$$

Method summary

- at each iteration
 - construct a teacher network through posterior constraints
 - train the NN to emulate the predictions of the teacher

Method summary

- at *test* time, can use either the distilled network p, or the teacher network q
- both improve over the base NN significantly
- q generally performs better than p
- *p* is more light-weight
 - no explicit rule expression
 - e.g., rule assessment is expensive/unavailable at test time

Sentiment classification

sentence -> positive/negative

Applications

• base network: CNN [Kim, 2014]

Rule knowledge

- identify contrastive sense
 - capture the dominant sentiment
- conjunction word ``but"
 - sentence S with structure A-but-B:
 => sentiment of B dominates

has-'A-but-B'-structure(S) \Rightarrow $(\mathbf{1}(y=+) \Rightarrow \boldsymbol{\sigma}_{\theta}(B)_{+} \land \boldsymbol{\sigma}_{\theta}(B)_{+} \Rightarrow \mathbf{1}(y=+))$

Results

• accuracy (%)

	Model	SST2	MR	CR
1	CNN (Kim, 2014)	87.2	81.3±0.1	84.3±0.2
2	CNN-Rule- <i>p</i>	88.8	81.6 ± 0.1	$85.0 {\pm} 0.3$
3	CNN-Rule-q	89.3	81.7±0.1	85.3±0.3
4	MGNC-CNN (Zhang et al., 2016)	88.4	_	_
5	MVCNN (Yin and Schutze, 2015)	89.4	_	_
6	CNN-multichannel (Kim, 2014)	88.1	81.1	85.0
7	Paragraph-Vec (Le and Mikolov, 2014)	87.8	_	_
8	CRF-PR (Yang and Cardie, 2014)	_	_	82.7
9	RNTN (Socher et al., 2013)	85.4	_	_
10	G-Dropout (Wang and Manning, 2013)	_	79.0	82.1

Comparisons to other rule integration methods

• SST2 dataset

•		Model	Accuracy (%)
-	1	CNN (Kim, 2014)	87.2
	2	-but-clause	87.3
	3	$-\ell_2$ -reg	87.5
	4	-project	87.9
	5	-opt-project	88.3
	6	-pipeline	87.9
-	7	-Rule-p	88.8
	8	-Rule- q	89.3

Applications

Sentiment

Results

Data size, semi-supervision

• SST2 dataset

	Data size	5%	10%	30%	100%
1	CNN	79.9	81.6	83.6	87.2
2	-Rule- <i>p</i>	81.5	83.2	84.5	88.8
3	-Rule- <i>q</i>	82.5	83.9	85.6	89.3
4	-semi-PR	81.5	83.1	84.6	_
5	-semi-Rule-p	81.7	83.3	84.7	_
6	-semi-Rule-q	82.7	84.2	85.7	_

Named entity recognition (NER)

- to locate and classify words into entity categories
 - Persons/Organizations/Locations/...
- assigns to each word a named entity tag:
 - B-PER: beginning of a person name
 - I-ORG: inside an organization name
- base NN: bidirectional LSTM RNN
 [Chiu and Nichols, 2015]

Applications

Rule knowledge

NER

- constraints on successive labels for a valid tag sequence
 - e.g., I-ORG cannot follow B-PER
- listing structure

Applications

- "1. Juventus, 2. Barcelona, 3. ..."
- "Juventus" is an organization, so "Barcelona" must be an organization, rather than a location

Applications

Results

• F1 score on CoNLL-2003 dataset

	Model	F1
1	BLSTM	89.55
2	BLSTM-Rule-trans	<i>p</i> : 89.80, <i>q</i> : 91.11
3	BLSTM-Rules	<i>p</i> : 89.93, <i>q</i> : 91.18
4	NN-lex (Collobert et al., 2011)	89.59
5	S-LSTM (Lample et al., 2016)	90.33
6	BLSTM-lex (Chiu and Nichols, 2015)	90.77
7	BLSTM-CRF ₁ (Lample et al., 2016)	90.94
8	Joint-NER-EL (Luo et al., 2015)	91.20
9	BLSTM-CRF $_2$ (Ma and Hovy, 2016)	91.21

Conclusions

- iterative rule knowledge distillation
 - combines FOL rules with DNNs
- general applicability
 - CNNs/RNNs
 - knowledge expressed in FOL
 - tasks: sentiment analysis/NER

- human knowledge
 - abstract, fuzzy, built on high-level concepts
 - e.g., a *dog* has four *legs*

- human knowledge
 - abstract, fuzzy, built on high-level concepts
 - e.g., a *dog* has four *legs*
- DNN
 - end-to-end

- human knowledge
 - abstract, fuzzy, built on high-level concepts
 - e.g., a *dog* has four *legs*
- DNN
 - end-to-end

- human knowledge
 - abstract, fuzzy, built on high-level concepts
 - e.g., a *dog* has four *legs*
- DNN
 - end-to-end

• learn modules for complete knowledge representation $r_{\phi}(X, Y)$

- human knowledge
 - abstract, fuzzy, built on high-level concepts
 - e.g., a *dog* has four *legs*
- DNN
 - end-to-end

- learn modules for complete knowledge representation $r_{\phi}(X, Y)$
- learn knowledge confidence λ

References

[Minksy, 1980] Marvin Minksy. 1980. Learning meaning. Technical Report AI Lab Memo.

[Lake et al., 2015] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. 2015. Humanlevel concept learning through probabilistic program induction. Science.

[Garcez et al., 2012] Artur S d'Avila Garcez, Krysia Broda, and Dov M Gabbay. 2012. Neural-symbolic learning systems: foundations and applications. Springer Science & Business Media

[Kulkarni et al., 2011] Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum. 2015. Deep convolutional inverse graphics network. NIPS.

[Karaletsos et al., 2016] Theofanis Karaletsos, Serge Belongie, Cornell Tech, and Gunnar R^{atsch}. 2016. Bayesian representation learning with oracle constraints. ICLR

[Ganchev et al., 2010] Kuzman Ganchev, Joao Grac, a, Jennifer Gillenwater, and Ben Taskar. 2010. Posterior regularization for structured latent variable models. JMLR

[Liang et al., 2009] Percy Liang, Michael I Jordan, and Dan Klein. 2009. Learning from measurements in exponential families. ICML.

[Zhu et al., 2014] Jun Zhu, Ning Chen, and Eric P Xing. 2014. Bayesian inference with posterior regularization and applications to infinite latent SVMs. JMLR

[Liang et al., 2008] Percy Liang, Hal Daum'e III, and Dan Klein. 2008. Structure compilation: trading structure for features. ICML

[Kim, 2014] Yoon Kim. 2014. Convolutional neural networks for sentence classification. EMNLP

[Chiu and Nichols, 2015] Jason PC Chiu and Eric Nichols. 2015. Named entity recognition with bidirectional LSTM-CNNs. arXiv