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Deep NNs
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Motivation



Deep NNs

• heavily rely on massive labeled data

• uninterpretable

• hard to encode human intention/domain knowledge
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How humans learn

• learn from concrete examples (as DNNs do)

• learn from general knowledge and rich experiences 
[Minksy 1980; Lake et al., 2015]

• the past tense of verbs1: 
• regular verbs –d/-ed
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1 https://www.technologyreview.com/s/544606/can-this-man-make-aimore-human



DNNs + knowledge
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DNNs + knowledge

• logic rule
• a flexible declarative language

• express structured knowledge
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DNNs + knowledge

• logic rule
• a flexible declarative language

• express structured knowledge

• DNNs + logic rules
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Related work

• neural-symbolic system [Garcez et al., 2012]

• specialized NNs from a rule set to execute reasoning

• learning interpretable hidden layer                               
[Kulkarni et al., 2011; Karaletsos et al., 2016]

• specialized types of knowledge (e.g., similarity tuples)

• posterior regularization on latent variable models     
[Ganchev et al., 2010; Liang et al., 2009; Zhu et al., 2014]

• not directly applicable to NNs

• or poor performance

• structure compilation/knowledge distillation                 
[Liang et al., 2008; Hinton et al., 2015; Bucilu et al., 2006]

• pipelined method with CRF/NN ensembles
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This work

• enhances general types of NNs

• with general types of knowledge expressed as logic 
rules
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This work

• enhances general types of NNs

• with general types of knowledge expressed as logic 
rules

• iterative rule knowledge distillation
• transfers rule knowledge into NNs

• generality
• CNN for sentiment classification

• RNN for named entity recognition
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Rule formulation

• input-target space: (𝑋, 𝑌)

• first-order logic (FOL) rules: (𝑟, 𝜆)
• 𝑟 𝑋, 𝑌 ∈ 0,1

• soft logic
• e.g., 𝐴 & 𝐵 ≔ max{𝐴 + 𝐵 − 1, 0}

• takes values ∈ [0,1]

• 𝜆: confidence level of the rule
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Rule knowledge distillation

• neural network 𝑝𝜃 𝑦 𝑥
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Rule knowledge distillation

• neural network 𝑝𝜃 𝑦 𝑥

• train to imitate the outputs of a rule-regularized 
teacher network (i.e. distillation)
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Rule knowledge distillation

• neural network 𝑝𝜃 𝑦 𝑥

• train to imitate the outputs of a rule-regularized 
teacher network (i.e. distillation)

14

Method

soft prediction of 𝑝𝜃true hard label

balancing parameter

at iteration 𝑡:

soft prediction of the 
teacher network



Teacher network construction

• teacher network: 𝑞(𝑌|𝑋)
• comes out of 𝑝

• fits the logic rules: 𝐸𝑞 𝑟 𝑋, 𝑌 = 1, with confidence 𝜆
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Teacher network construction

• teacher network: 𝑞(𝑌|𝑋)
• comes out of 𝑝

• fits the logic rules: 𝐸𝑞 𝑟 𝑋, 𝑌 = 1, with confidence 𝜆
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Method

slack variable

rule constraints

closed-form solution:



Method summary

18

• at each iteration
• construct a teacher network through posterior constraints

• train the NN to emulate the predictions of the teacher

Method



Method summary
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• at test time, can use either the distilled network 𝑝, or the 
teacher network 𝑞

• both improve over the base NN significantly

• 𝑞 generally performs better than 𝑝

• 𝑝 is more light-weight
• no explicit rule expression

• e.g., rule assessment is expensive/unavailable at test time

Method



Sentiment classification

• sentence -> positive/negative

• base network: CNN [Kim, 2014]
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Rule knowledge

• identify contrastive sense
• capture the dominant sentiment

• conjunction word ``but’’
• sentence S with structure A-but-B: 

=> sentiment of B dominates
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Results
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Applications Sentiment

• accuracy (%)



Comparisons to other rule integration methods
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Applications Sentiment Results

• SST2 dataset



Data size, semi-supervision
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• SST2 dataset

Applications Sentiment Results



Named entity recognition (NER)

25

Applications

• to locate and classify words into entity categories

• Persons/Organizations/Locations/…

• assigns to each word a named entity tag:
• B-PER: beginning of a person name

• I-ORG: inside an organization name

• base NN: bidirectional LSTM RNN 

[Chiu and Nichols, 2015]



Rule knowledge

• constraints on successive labels for a valid tag sequence
• e.g., I-ORG cannot follow B-PER

• listing structure
• “1. Juventus, 2. Barcelona, 3. ...”

• “Juventus” is an organization, so “Barcelona” must be an 
organization, rather than a location
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Results

• F1 score on CoNLL-2003 dataset
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Conclusions

• iterative rule knowledge distillation
• combines FOL rules with DNNs

• general applicability
• CNNs/RNNs

• knowledge expressed in FOL

• tasks: sentiment analysis/NER
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Future work

• human knowledge
• abstract, fuzzy, built on high-level concepts 

• e.g., a dog has four legs
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• human knowledge
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• end-to-end
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Future work

• human knowledge
• abstract, fuzzy, built on high-level concepts 

• e.g., a dog has four legs

• DNN
• end-to-end

• learn modules for complete knowledge representation 
𝑟𝜙(𝑋, 𝑌)
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Future work

• human knowledge
• abstract, fuzzy, built on high-level concepts 
• e.g., a dog has four legs

• DNN
• end-to-end

• learn modules for complete knowledge representation 
𝑟𝜙(𝑋, 𝑌)

• learn knowledge confidence λ
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