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Real-world Machine Learning Problems
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Data and experience of all kinds 
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Data examples Rewards Auxiliary agentsRules/Constraints

Type-2 
diabetes is 90% 
more common 
than type-1 

Adversaries

• And all combinations of such 
• Interpolations between such 
• …

…

Master classes
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Knowledge graphs



This is where evidence 
and information start

An Example: ML for Healthcare
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A ready-to-use real AI solution is extremely complex, 
given all these experiences to train on 

• Abnormal regions in medical images are 
difficult to identify.

• How to localize the image regions and
tags that are relevant to a sentence?

• How to distribute topics across sentences
• How to make report readable to humans?

Use Case: Automatic Medical (or other) Report Generation

Raw Data Enrichment Model/Algorithm System/Infra
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Containers and Storage Volumes

Data/ML Process Builder

Distributed Communications Backend Hardware Resource Management

DL Systems

DL Model Interchange

Data SystemsML Systems

Hardware requests

Inter-operability between diverse systems? 
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Data wrangling 
Feature engineering
Model compiling
Algorithm designing
Distributed training
Debugging
Resource provisioning
Hardware management
Fault recovery
…etc

An AI solution
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Build versus Craft

• Modules, Building-blocks
• Nuts and Bolts 
• Interoperability
• Process 
• Soundness
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Schedule

● Lecture#1: Theory: The Standard Model of ML
A blueprint of ML paradigms for ALL experience

(Jan 19 Thursday, 4:45pm-6:15pm UK Time)

● Lecture#2: Tooling: Operationalizing The Standard Model
Compose your ML solutions like playing Lego
(Jan 20 Thursday, 1:00pm-2:30pm)

● Lecture#3: Computing: Modern infrastructure for productive ML 
Automatic tuning, distributing, and scheduling 
(Jan 20 Thursday, 4:45pm-6:15pm)
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solver
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architecture
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Theory: 

The Standard Model – A Blueprint for ML

Optimization 
solver

Loss Model 
architecture

	min%	ℒ '
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Experience of all kinds 
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Data examples Rewards Auxiliary agentsRules/Constraints

Type-2 
diabetes is 90% 
more common 
than type-1 

Adversaries

• And all combinations of such 
• Interpolations between such 
• …

…

Master classes
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Knowledge graphs

Human learning vs machine learning 



The zoo of ML/AI models 

● Neural networks
! Convolutional networks
! AlexNet, GoogleNet, ResNet
! Recurrent networks, LSTM
! Transformers
! BERT, GPTs

● Graphical models
! Bayesian networks
! Markov Random fields
! Topic models, LDA
! HMM, CRF
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● Kernel machines
! Radial Basis Function Networks
! Gaussian processes
! Deep kernel learning
! Maximum margin
! SVMs 

● Decision trees
● PCA, Probabilistic PCA, Kernel 

PCA, ICA
● Boosting



The zoo of ML/AI algorithms
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The zoo of ML/AI algorithms

actor-critic

imitation learning softmax policy gradient

policy optimization

posterior regularization
constraint-driven learning

regularized Bayes 

GANs

active learning

intrinsic reward

inverse RL

knowledge distillation

energy-based GANs 

maximum likelihood estimation

prediction minimization generalized expectation

learning from measurements 

adversarial domain adaptation

reinforcement learning as inference

data augmentation

data re-weighting

label smoothing

weak/distant supervision

reward-augmented maximum likelihood
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Really hard to navigate, and to realize 

● Depending on individual’s 
expertise and creativity

● Bespoke, delicate pieces of 
art

● Like an airport with different 
runways for every different 
types of aircrafts 
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Physics in the 1800’s

● Electricity & magnetism: 
! Coulomb’s law, Ampère, Faraday, ...

● Theory of light beams:
! Particle theory: Isaac Newton, Laplace, Plank
! Wave theory: Grimaldi, Chris Huygens, Thomas Young, Maxwell

● Law of gravity
! Aristotle, Galileo, Newton, …
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Standard Model in Physics

∂vF
uV

=
4π

c
ju

ε
uvkλ

∂vFkλ = 0

1861 1910s 1970s

Diverse 
electro-
magnetic 
theories

Maxwell’s Eqns: 
original form

Simplified w/ 
rotational 
symmetry

Further 
simplified w/ 
symmetry of 
special relativity

Standard Model 
w/ Yang-Mills 
theory and US(3) 
symmetry

Unification of 
fundamental 
forces? 



Quest for more standardized, unified ML principles
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[P. Langley, 1989]



Toward A “Standard Model” of ML

● Loss

● Experience

● Optimization solver

● Model architecture
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Optimization 
solver

Loss Model 
architecture

min! ℒ 𝜃, ℰ

Experience



Toward A “Standard Model” of ML

● Loss

● Experience

● Optimization solver

● Model architecture

27

𝒎𝒊𝒏
𝒒, 𝜽

− 𝔼 +𝔻−ℍ

Experience Divergence Uncertainty



Toward A “Standard Model” of ML

● Loss

● Experience

● Optimization solver

● Model architecture

𝒎𝒊𝒏
𝒒, 𝜽

− 𝔼 +𝔻−ℍ

Experience Divergence Uncertainty
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[Hu & Xing, Harvard Data Science Review, 2022]: https://arxiv.org/abs/2108.07783

https://arxiv.org/abs/2108.07783


Maximum likelihood estimation (MLE) at a close look:

● The most classical learning algorithm 

● Supervised:
! Observe data 𝒟 = {(𝒙∗, 𝒚∗)}
! Solve with SGD

● Unsupervised:
! Observe 𝒟 = 𝒙∗ , 𝒚 is latent variable
! Posterior 𝑝"(𝒚|𝒙)
! Solve with EM:
§ E-step imputes latent variable 𝒚 through expectation on complete likelihood 
§ M-step: supervised MLE

29

min
$
− 𝔼 𝒙∗,𝒚∗ ∼𝒟

1
log 𝑝$(𝒚∗|𝒙∗)

min
$
− 𝔼𝒙∗∼𝒟

1
log7

𝒚
𝑝$(𝒙∗, 𝒚)



MLE as Entropy Maximization 

● Duality between supervised MLE and maximum entropy, when 𝑝 is 
exponential family

30

min
*(𝒙,𝒚)

𝐻 𝑝

s.t. 𝔼* 𝑇(𝒙, 𝒚) = 𝔼(-∗,.∗)∼𝒟 𝑇(𝒙, 𝒚)

features 𝑇(𝒙, 𝒚)

⇒ data as constraints

Shannon entropy 𝐻

Solve w/ Lagrangian method

𝑝 𝒙, 𝒚 = exp 𝜽 ⋅ 𝑇 𝒙 / 𝑍(𝜽)
Lagrangian multiplier 𝜽

min
$
−𝔼(𝒙∗,𝒚∗)∼𝒟 𝜽 ⋅ 𝑇(𝒙, 𝒚) + log 𝑍(𝜽) Negative log-likelihood

How to estimate 𝜃 − Close form? SGD? 



MLE as Entropy Maximization 

● Unsupervised MLE can be achieved by maximizing the negative free 
energy: 
! Introduce an auxiliary variational distribution 𝑞(𝒚|𝒙) (and then play with its entropy 

and cross entropy, etc.)

32

log7
𝒚
𝑝$(𝒙∗, 𝒚) = 𝔼1(𝒚|𝒙∗) log

𝑝$ 𝒙∗, 𝒚
𝑞 𝒚 𝒙∗

+ KL 𝑞 𝒚 𝒙∗ || 𝑝$ 𝒚 𝒙∗

≥ 𝐻 𝑞 𝒚|𝒙∗ + 𝔼1(𝒚|𝒙∗) log 𝑝$(𝒙∗, 𝒚)



Algorithms for Unsupervised MLE

1) Solve with EM

q E-step:  Maximize ℒ 𝑞, 𝜽 w.r.t 𝑞, equivalent to minimizing KL by setting 

q M-step: Maximize ℒ 𝑞, 𝜽 w.r.t 𝜽: max
"

𝔼#(𝒚|𝒙∗) log 𝑝" 𝒙∗, 𝒚

min
$
− 𝔼𝒙∗∼𝒟

1
log7

𝒚
𝑝$(𝒙∗, 𝒚)

𝑞 𝒚 𝒙∗ = 𝑝""#$(𝒚|𝒙
∗)

log7
𝒚
𝑝$(𝒙∗, 𝒚) = 𝔼1(𝒚|𝒙∗) log

𝑝$ 𝒙∗, 𝒚
𝑞 𝒚 𝒙∗

+ KL 𝑞 𝒚 𝒙∗ || 𝑝$ 𝒚 𝒙∗

≥ 𝐻 𝑞 𝒚|𝒙∗ + 𝔼1(𝒚|𝒙∗) log 𝑝$(𝒙∗, 𝒚)
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Alternating projection



2) When model 𝑝𝜽 is complex, directly working with the true posterior 𝑝𝜽(𝒚|𝒙∗)
is intractable ⇒ Variational EM

§ Consider a sufficiently restricted family 𝑄 of 𝑞(𝒚|𝒙) so that minimizing the KL is 
tractable

q E.g., parametric distributions, factorized distributions

§ E-step: Maximize ℒ 𝑞, 𝜽 w.r.t 𝑞 ∈ 𝑄, equivalent to minimizing KL
§ M-step: Maximize ℒ 𝑞, 𝜽 w.r.t 𝜽 : max

"
𝔼#(𝒚|𝒙∗) log 𝑝" 𝒙∗, 𝒚

log7
𝒚
𝑝$(𝒙∗, 𝒚) = 𝔼1(𝒚|𝒙∗) log

𝑝$ 𝒙∗, 𝒚
𝑞 𝒚 𝒙∗

+ KL 𝑞 𝒚 𝒙∗ || 𝑝$ 𝒚 𝒙∗

≥ 𝐻 𝑞 𝒚|𝒙∗ + 𝔼1(𝒚|𝒙∗) log 𝑝$(𝒙∗, 𝒚)

Algorithms for Unsupervised MLE (cont’d)
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3) When 𝑞 is complex, e.g., deep NNs, optimizing 𝑞 in E-step is difficult (e.g., 
high variance) ⇒ Wake-Sleep algorithm [Hinton et al., 1995]

• Sleep-phase (E-step):

• Wake-phase (M-step): Maximize ℒ 𝑞, 𝜽 w.r.t 𝜽 : max
"

𝔼#(𝒚|𝒙∗) log 𝑝" 𝒙∗, 𝒚

min
)

KL(𝑝" 𝒚 𝒙∗ ||𝑞) 𝒚 𝒙∗ ) Reverse KL

Other tricks: reparameterization in VAE (‘2014), control variates in NVIL (‘2014)

Algorithms for Unsupervised MLE (cont’d)

35

log7
𝒚
𝑝$(𝒙∗, 𝒚) = 𝔼1(𝒚|𝒙∗) log

𝑝$ 𝒙∗, 𝒚
𝑞 𝒚 𝒙∗

+ KL 𝑞 𝒚 𝒙∗ || 𝑝$ 𝒚 𝒙∗

≥ 𝐻 𝑞 𝒚|𝒙∗ + 𝔼1(𝒚|𝒙∗) log 𝑝$(𝒙∗, 𝒚)



Quick summary of MLE

● Supervised:
! Duality with MaxEnt
! Solve with SGD

● Unsupervised:
! Lower bounded by negative free energy
! Solve with EM, VEM, Wake-Sleep, …

● Close connections to MaxEnt
● With MaxEnt, algorithms (e.g., EM) arises naturally
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Posterior Regularization (PR)

● Make use of constraints in Bayesian learning
! An auxiliary posterior distribution 𝑞 𝜃
! Slack variable 𝜉, constant weight 𝛼 = 𝛽 > 0

! E.g., max-margin constraint for linear regression [Jaakkola et al., 1999] and 
general models (e.g., LDA, NNs) [Zhu et al., 2014]

● Solution for 𝑞

37

min
1, 3

− 𝛼𝐻 𝑞 − 𝛽𝔼1
1

+ 𝜉log 𝑝$ 𝒙, 𝒚

[Ganchev et al., 2010]𝑠. 𝑡. −𝔼1 𝑓$ 𝒙 , 𝒚 ≤ 𝜉

𝑞 𝜽 = exp 4
4 / 𝑍𝛽 log 𝑝$(𝒙, 𝒚) + 𝑓$ 𝒙 , 𝒚

𝛼



More general learning leveraging PR

● No need to limit to Bayesian learning
● E.g., Complex rule constraints on general models [Hu et al., 2016], 

where 
! 𝑞 can be over arbitrary variables, e.g., 𝑞(𝒙, 𝒚)
! 𝑝" 𝒙, 𝒚 is NNs of arbitrary architectures with parameters 𝜽

38

𝑠. 𝑡. 𝔼1 𝒙,𝒚
1

≤ 𝜉1 − 𝑟(𝒙, 𝒚)

min
1, $,3

− 𝛼𝐻 𝑞 − 𝛽𝔼1
1

+ 𝜉log 𝑝$ 𝒙, 𝒚
E.g., 𝑟(𝒙, 𝒚) is a 1st-order logical rule:
If sentence 𝒙 contains word ``but’’ 
⇒ its sentiment 𝒚 is the same as the 
sentiment after “but”



EM for the general PR

● Rewrite without slack variable:

! Solve with EM

§ E-step:

§ M-step:   

39

𝑞 𝒙, 𝒚 = exp 4
4 / 𝑍𝛽 log 𝑝$(𝒙, 𝒚) + 𝑓 𝒙 , 𝒚

𝛼

min
$

𝔼1
1

min
1, $

− 𝛼𝐻 𝑞 − 𝛽𝔼1
1

− 𝔼1 𝒙,𝒚
1
𝑓 𝒙 , 𝒚log 𝑝$ 𝒙, 𝒚

log 𝑝$ 𝒙, 𝒚



● Introduce arbitrary 𝑞 𝒚 𝒙

Data as constraint. 
Given 𝒙 ∼ 𝒟, this constraint doesn’t 
influence the solution of 𝑞 and 𝜽

log7
𝒚
𝑝$(𝒙∗, 𝒚) ≥ 𝐻 𝑞 𝒚|𝒙∗ + 𝔼1(𝒚|𝒙∗) log 𝑝$(𝒙∗, 𝒚)

min
1, $, 3

− 𝛼𝐻 𝑞 − 𝛽𝔼1
1

+ 𝜉

𝑠. 𝑡. −𝔼1
1

< 𝜉𝑓 𝒙 ; 𝒟

log 𝑝$ 𝒙, 𝒚

! 𝑓 𝒙 ;𝒟 ∶= log 𝔼*∗∼𝒟 𝟙𝒙∗ 𝒙
§ A constraint saying 𝒙 must equal to one of the true data points
§ Or alternatively, the (log) expected similarity of 𝒙 to dataset 𝒟, 

with 𝟙 ⋅ as the similarity measure (we’ll come back to this later)
! 𝛼 = 𝛽 = 1

40

Reformulating unsupervised MLE with PR



A “Standard Model” of Machine Learning
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The Standard Equation (SE) 

Equivalently:

min
1, $, 356

𝛽𝔻
1

− 𝛼ℍ 𝑞 + 𝜉

𝑠. 𝑡. −𝔼1 𝒙,𝒚
1

< 𝜉

𝑞 𝒙, 𝒚 , 𝑝$ 𝒙, 𝒚

𝑓 𝒙 , 𝒚

min
1, $

− 𝔼1 𝒙,𝒚
1

+ 𝛽𝔻
1

− 𝛼ℍ 𝑞𝑓 𝒙 , 𝒚 𝑞 𝒙, 𝒚 , 𝑝$ 𝒙, 𝒚

3 terms: Experience
(exogenous regularizations)
e.g., data examples, rules

Textbook
𝑓 𝒙 , 𝒚| .

Divergence
(fitness)
e.g., Cross Entropy

Teacher
𝑞 𝒙, 𝒚

Student
𝑝! 𝒙, 𝒚

Uncertainty
(self-regularization)
e.g., Shannon entropy

Uncertainty

42
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min
1, $

− 𝔼1 𝒙,𝒚
1

+ 𝛽𝔻
1

− 𝛼ℍ 𝑞𝑓 𝒙 , 𝒚 𝑞 𝒙, 𝒚 , 𝑝$ 𝒙, 𝒚

The Standard Equation (SE) 

[Note: in SE, experience function 𝑓 can also depends on 𝜃. See the paper for mor details]



Overview: well-known algorithms/paradigms recovered by SE

T
ow

ard
a

‘Standard
M

odel’of
M

achine
L
earning
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Experience type Experience function f Divergence D ↵ � Algorithm

Data instances

fdata(x;D) CE 1 1 Unsupervised MLE

fdata(x,y;D) CE 1 ✏ Supervised MLE

fdata-self(x,y;D) CE 1 ✏ Self-supervised MLE

fdata-w(t;D) CE 1 ✏ Data Re-weighting

fdata-aug(t;D) CE 1 ✏ Data Augmentation

factive(x,y;D) CE 1 ✏ Active Learning (Ertekin et al., 2007)

Knowledge
frule(x,y) CE 1 1 Posterior Regularization (Ganchev et al., 2010)

frule(x,y) CE R 1 Unified EM (Samdani et al., 2012)

Reward

logQ✓(x,y) CE 1 1 Policy Gradient

logQ✓(x,y) +Qin,✓(x,y) CE 1 1 + Intrinsic Reward

Q✓(x,y) CE ⇢ > 0 ⇢ > 0 RL as Inference

Model fmimicking
model (x,y;D) CE 1 ✏ Knowledge Distillation (G. Hinton et al., 2015)

Variational

binary classifier JSD 0 1 Vanilla GAN (Goodfellow et al., 2014)

discriminator f -divergence 0 1 f-GAN (Nowozin et al., 2016)

1-Lipschitz discriminator W1 distance 0 1 WGAN (Arjovsky et al., 2017)

1-Lipschitz discriminator KL 0 1 PPO-GAN (Y. Wu et al., 2020)

Online f⌧ (t) CE ⇢ > 0 ⇢ > 0 Multiplicative Weights (Freund & Schapire, 1997)

Table 1. Example configurations of the components in the standard equation (Eqs.3.1, 3.2), which recover different existing
algorithms. Here, ‘CE’ means Cross Entropy; ‘JSD’ is the Jensen-Shannon divergence; ‘W1 dist.’ is the first-order Wasserstein
distance; and ‘KL’ is the KL divergence. Refer to Sections 4, 5, and 6 for more details.
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min
1, $

− 𝔼1 𝒙,𝒚
1

+ 𝛽𝔻
1

− 𝛼ℍ 𝑞𝑓 𝒙 , 𝒚 𝑞 𝒙, 𝒚 , 𝑝$ 𝒙, 𝒚

SE Component: Experience Function 𝑓

Experience
(exogenous regularizations)
e.g., data examples, rules

Set Divergence to Cross Entropy
𝔻 𝑞, 𝑝! = −𝔼"[ log 𝑝! ]

Set Uncertainty to 
Shannon Entropy
ℍ 𝑞 = 𝐻 𝑞 := −𝔼%[ log 𝑞 ]

Different choices of experience function 𝑓 lead to different algorithms:



min
1, $

− 𝛼𝐻 𝑞 − 𝛽𝔼1
1

− 𝔼1
1
𝑓 𝒙, 𝒚log 𝑝$ 𝒙, 𝒚

SE with Data Experience -- Supervised MLE

Observe data 𝒟 = {(𝒙∗, 𝒚∗)}

46

𝑓 ≔ 𝑓(𝒙, 𝒚; 𝒟) = log 𝔼(𝒙∗,𝒚∗)∼𝒟 𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚 𝛼 = 1, 𝛽 = 𝜖

min −
$

𝔼1
1
log 𝑝$ 𝒙, 𝒚

𝑞 𝒙, 𝒚 = exp 4
4

/𝑍 ≈ exp 𝑓 𝒙 , 𝒚; 𝒟 /𝑍 = \𝑝C(𝒙, 𝒚)𝛽 log 𝑝$(𝒙, 𝒚) + 𝑓 𝒙 , 𝒚; 𝒟
𝛼

Negative data log-likelihood

Teacher step:

Student step:



Observe data 𝒟 = {(𝒙∗)}

SE with Data Experience -- Unsupervised MLE

47

𝑓 ≔ 𝑓(𝒙 ; 𝒟) = log 𝔼𝒙∗∼𝒟 𝟙𝒙∗ 𝒙 𝛼 = 𝛽 = 1

𝑞 = 𝑞(𝒚|𝒙)

min
1, $

−𝐻 𝑞 − 𝔼1
1
log 𝑝$ 𝒙, 𝒚

Negative variational lower bound

min
1, $

− 𝛼𝐻 𝑞 − 𝛽𝔼1
1

− 𝔼1
1
𝑓 𝒙, 𝒚log 𝑝$ 𝒙, 𝒚



SE with “Oracle Data Experience”: Active Learning

● Have access to a vast pool of unlabeled data instances
● Can select instances (queries) to be labeled by an oracle (e.g., human)

● Experiences:

! 𝑢 𝒙 measures informativeness of an instance 𝒙

§ e.g., Uncertainty on 𝒙, measured by Shannon entropy 𝐻 𝑝! 𝒚 𝒙

! Encode instances + oracle labels:

48

𝑓(𝒙, 𝒚 ; Oracle) = log 𝔼 𝒙∗∼𝒟, 𝒚∗∼./0123(𝒙∗) 𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚



SE and Active Learning

49

𝑓 ≔ 𝑓(𝒙, 𝒚 ; 𝑂𝑟𝑎𝑐𝑙𝑒) + 𝑢(𝒙) 𝛼 = 1, 𝛽 = 𝜖

min
1, $

− 𝛼𝐻 𝑞 − 𝛽𝔼1
1

− 𝔼1 𝒙,𝒚
1
𝑓 𝒙, 𝒚log 𝑝$ 𝒙, 𝒚

! Teacher step:

! Student step: 

𝑞 𝒙, 𝒚 = exp 4
4 / 𝑍𝛽 log 𝑝$ 𝒙, 𝒚 + 𝑓 𝒙 , 𝒚 ; 𝑂𝑟𝑎𝑐𝑙𝑒 + 𝑢(𝒙)

𝛼

min
$

−𝔼1
1
log 𝑝$ 𝒙, 𝒚

Equivalent to [e.g., Ertekin et al., 07]:
• Randomly draw a subset 𝒟#$% = {𝒙∗}
• Draw a query 𝒙∗ from 𝒟#$% according to exp{𝑢(𝒙)}
• Get label 𝒚∗ for 𝒙∗ from the oracle
• Maximize log likelihood on (𝒙∗, 𝒚∗)



SE with Reward Experience
AGENT ENVIRONMENT- State 𝒙'

- Take action 𝒚" ∼ 𝑝#(𝒚"|𝒙")

- Get reward 𝑟' = 𝑟(𝒙', 𝒚')
- New state 𝒙"$%

Markov Decision 
Process (MDP)

50



SE with Reward Experience: Reinforcement Learning

● 𝑝$ 𝒙, 𝒚 = 𝑝$ 𝒚 𝒙 𝑝6(𝒙), where 𝑝$ 𝒚 𝒙 is the policy, 𝑝6(𝒙) is the start state 
distribution

● 𝑄$ 𝒙, 𝒚 − expected future reward of taking action 𝒚 in state 𝒙 and continuing 
the current policy 𝑝$

● 𝜇$ 𝒙 − state distribution 

AGENT ENVIRONMENT- State 𝒙'
- Take action 𝒚" ∼ 𝑝#(𝒚"|𝒙")

- Get reward 𝑟' = 𝑟(𝒙', 𝒚')
- New state 𝒙"$%

𝑄& 𝒙, 𝒚 = 𝔼'! E
()*

+
𝑟( | 𝒙* = 𝒙, 𝒚* = 𝒚

Markov Decision 
Process (MDP)

𝜇& 𝒙 =E
()*

+
𝑝(𝒙( = 𝒙) 51



SE with Reward Experience I: Policy Gradient

● Policy gradient

min
1, $

− 𝛼𝐻 𝑞 − 𝛽𝔼1
1

− 𝔼1
1
𝑓 𝒙, 𝒚log 𝑝$ 𝒙, 𝒚

𝛼 = 𝛽 = 1𝑓$ 𝒙, 𝒚 ∶= log 𝑄$ 𝒙, 𝒚

! Teacher step: 
! Student step:

𝑞()) 𝒙, 𝒚 = 𝑝!(")(𝒙, 𝒚)𝑄
!(")(𝒙, 𝒚) / 𝑍
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(log-derivative trick)

(policy gradient theorem)
policy gradient



SE with Reward Experience II: RL as Inference 

● RL-as-inference [Dayan’97; Levine’18, …]

𝛼 = 𝛽 = 𝜌 (> 0)𝑓$ 𝒙, 𝒚 ≔ 𝑄$ 𝒙, 𝒚

min
1, $

− 𝛼𝐻 𝑞 − 𝛽𝔼1
1

− 𝔼1
1
𝑓 𝒙, 𝒚log 𝑝$ 𝒙, 𝒚

Negative variational lower bound

Define random variable 𝑜 ∈ 0,1 , 𝑝 o = 1 ∝ exp{ 𝑄", 𝒙, 𝒚 /𝜌} (reward excitement fuc. )
53

min
#, "

− 𝜌𝐻 𝑞 − 𝜌𝔼#
1

− 𝔼# 𝒙,𝒚
1

log 𝑝" 𝒙, 𝒚 𝑄" 𝒙, 𝒚

≥ − log 𝔼4-(𝒙,𝒚) 𝑝 𝑜 = 1 | 𝒙, 𝒚



SE with Other Experience
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T
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Experience type Experience function f Divergence D ↵ � Algorithm

Data instances

fdata(x;D) CE 1 1 Unsupervised MLE

fdata(x,y;D) CE 1 ✏ Supervised MLE

fdata-self(x,y;D) CE 1 ✏ Self-supervised MLE

fdata-w(t;D) CE 1 ✏ Data Re-weighting

fdata-aug(t;D) CE 1 ✏ Data Augmentation

factive(x,y;D) CE 1 ✏ Active Learning (Ertekin et al., 2007)

Knowledge
frule(x,y) CE 1 1 Posterior Regularization (Ganchev et al., 2010)

frule(x,y) CE R 1 Unified EM (Samdani et al., 2012)

Reward

logQ✓(x,y) CE 1 1 Policy Gradient

logQ✓(x,y) +Qin,✓(x,y) CE 1 1 + Intrinsic Reward

Q✓(x,y) CE ⇢ > 0 ⇢ > 0 RL as Inference

Model fmimicking
model (x,y;D) CE 1 ✏ Knowledge Distillation (G. Hinton et al., 2015)

Variational

binary classifier JSD 0 1 Vanilla GAN (Goodfellow et al., 2014)

discriminator f -divergence 0 1 f-GAN (Nowozin et al., 2016)

1-Lipschitz discriminator W1 distance 0 1 WGAN (Arjovsky et al., 2017)

1-Lipschitz discriminator KL 0 1 PPO-GAN (Y. Wu et al., 2020)

Online f⌧ (t) CE ⇢ > 0 ⇢ > 0 Multiplicative Weights (Freund & Schapire, 1997)

Table 1. Example configurations of the components in the standard equation (Eqs.3.1, 3.2), which recover different existing
algorithms. Here, ‘CE’ means Cross Entropy; ‘JSD’ is the Jensen-Shannon divergence; ‘W1 dist.’ is the first-order Wasserstein
distance; and ‘KL’ is the KL divergence. Refer to Sections 4, 5, and 6 for more details.

See paper for more details



min
1, $

− 𝔼1 𝒙,𝒚
1

+ 𝛽𝔻
1

− 𝛼ℍ 𝑞𝑓 𝒙 , 𝒚 𝑞 𝒙, 𝒚 , 𝑝$ 𝒙, 𝒚

SE Component: Divergence Function 𝔻

Divergence
(fitness)
e.g., Cross Entropy

We now look at the choices of divergence 𝔻:



SE with Cross Entropy or KL Divergence
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min
1, $

− 𝔼1 𝒙,𝒚
1

+ 𝛽𝔻
1

− 𝛼ℍ 𝑞𝑓 𝒙 , 𝒚 𝑞 𝒙, 𝒚 , 𝑝$ 𝒙, 𝒚

min
1, $

− 𝔼1 𝒙,𝒚
1

+ 𝛽𝔼1
1

− 𝛼ℍ 𝑞𝑓 𝒙 , 𝒚 log 𝑝$ 𝒙, 𝒚

All the algorithms we’ve just seen



SE with Other Divergences

● For notation simplicity, we use 𝒙 to replace (𝒙, 𝒚)
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min
1, $

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼1 𝒙
1
𝑓 𝒙𝑞 𝒙 , 𝑝$ 𝒙



● For notation simplicity, we use 𝒙 to replace (𝒙, 𝒚)

SE with Other Divergences

● Same as supervised MLE: 𝑓 ≔ 𝑓(𝒙 ; 𝒟), 𝛼 = 1, 𝛽 = 𝜖

● Equivalent to min
$

𝔻 4𝑝C 𝒙 , 𝑝$ 𝒙
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min
1, $

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼1 𝒙
1
𝑓 𝒙𝑞 𝒙 , 𝑝$ 𝒙



● For notation simplicity, we use 𝒙 to replace (𝒙, 𝒚)

SE with Other Divergences

● Same as supervised MLE: 𝑓 ≔ 𝑓(𝒙 ; 𝒟), 𝛼 = 1, 𝛽 = 𝜖

● Equivalent to min
$

𝔻 4

● Solve with probability functional descent (PFD) [Chu et al., 2019]
! 𝑝" 𝒙 can be optimized by minimizing 𝔼4- Ψ 𝒙 , where Ψ 𝒙 is the influence 

function for 𝔻 at 𝑝",
! Ψ is obtained with convex duality

! So the whole optimization is 

𝑝C 𝒙 , 𝑝$ 𝒙

Ψ 𝒙 = argmaxI 𝔼*& 𝜓 𝒙 − 𝔻∗(𝜓)

min$ maxI 𝔼*& 𝜓 𝒙 − 𝔻∗(𝜓)

Convex conjugate of𝔻

59

min
1, $

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼1 𝒙
1
𝑓 𝒙𝑞 𝒙 , 𝑝$ 𝒙



SE with JS Divergence: Generative Adversarial Learning 
(GANs)

● Solve with probability functional descent (PFD) [Chu et al., 2019]
! 𝑝" 𝒙 can be optimized by minimizing 𝔼4- Ψ 𝒙 , where Ψ 𝒙 is the influence 

function for 𝔻 at 𝑝",
! Ψ is obtained with convex duality

! So the whole optimization is 
Ψ 𝒙 = argmaxI 𝔼*& 𝜓 𝒙 − 𝔻∗(𝜓)

min$ maxI 𝔼*& 𝜓 𝒙 − 𝔻∗(𝜓)

Parameterize 𝜓 with an NN 𝐶). 
E.g., when 𝔻 is JSD and

Plugging into the equation 
recovers vanilla GAN training

𝜓𝝓(𝒙) ≔ 0.5 log 1 − 𝐶, − 0.5 log2

60

min
$

𝔻 4𝑝C 𝒙 , 𝑝$ 𝒙

Jensen-Shannon Divergence: JS 𝑞||𝑝! = -
.
KL(𝑞| ℎ + -

.
KL(𝑝!||ℎ)

where ℎ = -
.
(𝑞 + 𝑝!)



SE with Wasserstein Distance: W-GAN

● Based on the Kantorovich duality, the 1st-order Wasserstein distance 
between two distributions 𝑞 and 𝑝 is written as

! where ||𝜓||/ ≤ 1 is the constraint of 𝜓: 𝒳 → ℝ being a 1-Lipschitz function

● Setting 𝔻 to 𝑊4 leads to the Wasserstein GAN algorithm [Arjovsky et al., 2017]

𝑊4 𝑞, 𝑝 = sup||I||'J4 𝔼1 𝜓 𝒙 − 𝔼*(𝜓(𝒙))
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min
$

𝔻 4𝑝C 𝒙 , 𝑝$ 𝒙

min
$
𝑊4 𝑞, 𝑝 = min

$
sup||I||'J4 𝔼*( 𝜓 𝒙 − 𝔼*&(𝜓(𝒙))



Dynamic SE

● So far, we have seen SE as the ultimate learning objective
! Fully defines the learning problem in an analytical form

● In a dynamic or online setting, the learning objective itself may be evolving 
over time
! Data instances may follow changing distributions or come from evolving tasks (e.g., 

lifelong learning)
! Experience in a strategic game context can involve complex interactions with the 

target model through co-training or adversarial dynamics
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min
1, $

− 𝔼1 𝒙,𝒚
1

+ 𝛽𝔻
1

− 𝛼ℍ 𝑞𝑓 𝒙 , 𝒚 𝑞 𝒙, 𝒚 , 𝑝$ 𝒙, 𝒚



Dynamic SE

● So far, we have seen SE as the ultimate learning objective
! Fully defines the learning problem in an analytical form

● In a dynamic or online setting, the learning objective itself may be evolving 
over time

● An extended view of the SE for learning in dynamic contexts
! SE is a core part of an outer loop
! E.g., consider dynamic experience 𝑓0 indexed by time 𝜏
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min
1, $

− 𝔼1 𝒙,𝒚
1

+ 𝛽𝔻
1

− 𝛼ℍ 𝑞𝑓 𝒙 , 𝒚 𝑞 𝒙, 𝒚 , 𝑝$ 𝒙, 𝒚

min!,	$ − %! %,&
1 												 + )* 1 																										 − +ℍ -.' /	, 1 - /, 1 ,	2$ /, 1



● Recall in MLE, 𝑓 is a fixed function

● Intuitively, see 𝑓 as a similarity metric that measures similarity of sample 
𝒙 against real data 𝒟

● Instead of the manually fixed metric, can we learn a metric 𝑓K?

𝑓 ≔ 𝑓(𝒙 ; 𝒟) = log 𝔼𝒙∗∼𝒟 𝟙𝒙∗ 𝒙

min
1, $

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼1 𝒙
1
𝑓 𝒙𝑞 𝒙 , 𝑝$ 𝒙

64

Dynamic SE with Adversarial Experience:
Variations of GAN



Dynamic SE with Adversarial Experience:
Variations of GAN
● Augment the standard objective to account for 𝜙:

● Set 𝛼 = 0, 𝛽 = 1. Under mild conditions, the objective recovers:
! Vanilla GAN [Goodfellow et al., 2014], when 𝔻 is JS Divergence and 𝑓K is a 

binary classifier
! 𝑓-GAN [Nowozin et al., 2016], when 𝔻 is 𝑓-divergence
! W-GAN [Arjovsky et al., 2017], when 𝔻 is Wasserstein distance and 𝑓K is a 

1-Lipschitz function
! PPO-GAN [Wu et al., 2020],when 𝔻 is KL divergence

65* Proofs adapted from Farnia & Tse 2018: “A Convex Duality Framework for GANs”

min
$

max
K

min
1

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼1 𝒙
1

+ 𝔼*((𝒙)
1

𝑓K 𝒙𝑞 𝒙 , 𝑝$ 𝒙 𝑓K 𝒙



Quick recap: well-known algorithms/paradigms recovered by SE
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Experience type Experience function f Divergence D ↵ � Algorithm

Data instances

fdata(x;D) CE 1 1 Unsupervised MLE

fdata(x,y;D) CE 1 ✏ Supervised MLE

fdata-self(x,y;D) CE 1 ✏ Self-supervised MLE

fdata-w(t;D) CE 1 ✏ Data Re-weighting

fdata-aug(t;D) CE 1 ✏ Data Augmentation

factive(x,y;D) CE 1 ✏ Active Learning (Ertekin et al., 2007)

Knowledge
frule(x,y) CE 1 1 Posterior Regularization (Ganchev et al., 2010)

frule(x,y) CE R 1 Unified EM (Samdani et al., 2012)

Reward

logQ✓(x,y) CE 1 1 Policy Gradient

logQ✓(x,y) +Qin,✓(x,y) CE 1 1 + Intrinsic Reward

Q✓(x,y) CE ⇢ > 0 ⇢ > 0 RL as Inference

Model fmimicking
model (x,y;D) CE 1 ✏ Knowledge Distillation (G. Hinton et al., 2015)

Variational

binary classifier JSD 0 1 Vanilla GAN (Goodfellow et al., 2014)

discriminator f -divergence 0 1 f-GAN (Nowozin et al., 2016)

1-Lipschitz discriminator W1 distance 0 1 WGAN (Arjovsky et al., 2017)

1-Lipschitz discriminator KL 0 1 PPO-GAN (Y. Wu et al., 2020)

Online f⌧ (t) CE ⇢ > 0 ⇢ > 0 Multiplicative Weights (Freund & Schapire, 1997)

Table 1. Example configurations of the components in the standard equation (Eqs.3.1, 3.2), which recover different existing
algorithms. Here, ‘CE’ means Cross Entropy; ‘JSD’ is the Jensen-Shannon divergence; ‘W1 dist.’ is the first-order Wasserstein
distance; and ‘KL’ is the KL divergence. Refer to Sections 4, 5, and 6 for more details.
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Paradigms not (yet) 
covered by SE:
! Meta learning
! Lifelong learning
! …

Interesting future 
work to study the 
connections



Why this is useful? 

● Panoramic Learning: learning with ALL experience
! Experience composition
! Reuse specialized algorithms -- one runway for different aircrafts

● Complex interaction between experience

● Multi-agent game theoretic learning using all experience

69



● Distinct types of experience are all formulated with 𝑓 𝒙 , 𝒚
● Combine and plug different 𝑓 functions into SE to drive learning

70

𝑆𝐸 𝑓,𝔻, 𝛼, 𝛽
𝑓 = ++

Focus on what to use, instead of worrying about how to use

𝑤S ⋅ 𝑓 𝒙 | . 𝑤T ⋅ 𝑓 𝒙 | 𝑤U ⋅ 𝑓 𝒙 |+ 𝑤V ⋅ 𝑓 𝒙 |+ …

Panoramic Learning: experience composition



71

Panoramic Learning: experience composition
Ex.1: Using symbolic knowledge to learn neural networks

min!,	$ − %ℍ ' + )* 1 																										 − -! %,&
1 												. /	, 1' /, 1 ,	2$ /, 1

Neural model
Knowledge bases ConceptNet (CN)Medical KGTaxt samples

Hu et al., ACL 2016, “Harnessing Deep Neural Networks with Logic Rules”
Hu et al., NeurIPS 2020, “Deep Generative Models with Learnable Knowledge Constraints”
Tan et al., EMNLP 2020, “Summarizing Text on Any Aspects: A Knowledge-Informed Weakly-Supervised Approach”
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Panoramic Learning: experience composition
Ex.2: Using neural networks to “learn” symbolic knowledge

min!,	$ − %ℍ ' + )* 1 																										 − -! %,&
1 												. /	, 1' /, 1 ,	2$ /, 1

• ':	graph structure to be learned
• 	)!: a simulation model generating medical task 

samples %, & based on the knowledge graph '

Measuring likelihood of sample %, & under a 
trained medical neural model

Commonsense graph Medical KG

Hao, Tan et al., 2022, “BertNet: Harvesting Knowledge Graphs from Pretrained Language Models”



min!,	$ − %ℍ ' + )* 1 																										 − -! %,&
1 												. /	, 1' /, 1 ,	2$ /, 1

• ':	graph structure to be learned
• 	)!: a simulation model generating medical task 

samples %, & based on the knowledge graph '

Measuring likelihood of sample %, & under a 
trained medical neural model

Hao, Tan et al., 2022, “BertNet: Harvesting Knowledge Graphs from Pretrained Language Models”

Panoramic Learning: experience composition
Ex.2: Using neural networks to “learn” symbolic knowledge



Hao, Tan et al., 2022, “BertNet: Harvesting Knowledge Graphs from Pretrained Language Models”

Panoramic Learning: experience composition
Ex.2: Using neural networks to “learn” symbolic knowledge



Deng, Wang, Hsieh et al., EMNLP 2022, ” RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning”

Pretrained LM 
(e.g., GPT3)

Generate a story about cat: once upon a time, …
prompt ! input continuation

Experiences !

SE Data instances

Reward

min!,	$ − %ℍ ' + )* 1 																										 − -! %,&
1 												. /	, 1' /, 1 ,	2$ /, 1

• ':	graph structure to be learned
• 	)!: a simulation model generating medical task 

samples %, & based on the knowledge graph '

Measuring likelihood of sample %, & under a 
trained medical neural model

Panoramic Learning: experience composition
Ex.3: Learning prompts to control large pretrained models



● Combine and plug different 𝑓 functions into SE to drive learning

● Enable applications for controllable content generation

min
1, $

− 𝔼1 𝒙,𝒚
1

+ 𝛼𝔻
1

− 𝛽ℍ 𝑞𝑓 𝒙 , 𝒚 𝑞 𝒙, 𝒚 , 𝑝$ 𝒙, 𝒚

𝑤4 ⋅ 𝑓CLML +𝑤N ⋅ 𝑓OPQRS +𝑤T ⋅ 𝑓ORULOC +⋯

=

Controlling sentiment

The film is full of imagination!

The film is strictly routine!

Pos

Neg

[Hu et al., 2017; Yang et al., 2018]

Controllable text generation
𝑓 = sentiment classifier

+ linguistic rules 
+ language model

76

Panoramic Learning: experience composition
Ex.4: Learning controllable text generation – more in Lecture#2



Panoramic Learning: reusing algorithms 

● Unifying perspective of diverse paradigms (each tailored for a specific 
type of experience) under SE

● Combining or integrating different experiences
● Re-use or repurpose originally specialized algorithms 
! Systematic idea transfer and solution exchange
! Solving challenges in one paradigm by applying well-known solutions from 

another
! Accelerate innovations across research areas
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● Rules in PR ⇔ Reward in RL
● Empower reward learning algo. to learning rules [Hu et al., 2018]

Panoramic Learning: reusing algorithms – Ex.1

𝝐
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● Rules in PR ⇔ Reward in RL
● Empower reward learning algo. to learning rules [Hu et al., 2018]

Panoramic Learning: reusing algorithms – Ex.1

min
1, $

− 𝔼1 𝒙,𝒚
1

+ 𝛽𝔻
1

− 𝛼ℍ 𝑞𝑓 𝒙 , 𝒚 𝑞 𝒙, 𝒚 , 𝑝$ 𝒙, 𝒚

MaxEnt inverse RL [Ziebart’08]:
• Parameterize reward 𝑓, 𝒙 , 𝒚 with 𝜙
• Learn 𝜙 with the additional optimization step:

min
)

− 𝔼 𝒙∗,𝒚∗ ∼𝒟
1log 𝑞) 𝒙∗, 𝒚∗

Note: 𝑞 is a function of 𝑓,, 
thus 𝑞 depends on 𝜙

Reuse to learn 
parameterized rules

PR with learnable rule 
constraints 𝑓) 𝒙 , 𝒚 :
• E-step to get closed-form 𝑞,
• M-step to update 𝑝!
• Reused reward-learning 

step to update 𝜙
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● Data in supervised MLE ⇔ Reward in RL
● Empower reward learning algo. to learning data augmentation [Hu et al., 2019]

Panoramic Learning: reusing algorithms – Ex.2

𝝐
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● Data in supervised MLE ⇔ Reward in RL
● Empower reward learning algo. to learning data augmentation [Hu et al., 2019]

Panoramic Learning: reusing algorithms – Ex.2

min
1, $

− 𝔼1 𝒙,𝒚
1

+ 𝛼𝔻
1

− 𝛽ℍ 𝑞𝑓 𝒙 , 𝒚 𝑞 𝒙, 𝒚 , 𝑝$ 𝒙, 𝒚

Intrinsic reward learning [Zheng et al.,08]:
• Reward 𝑓, = 𝑓23 + 𝑓,

4)

• I.e., parameterize (intrinsic) reward 𝑓,4) with 𝜙
• Learn 𝜙 with the additional optimization step:

min
)

ℒ56(𝜃7(𝜙))
Reuse to learn 
parameterized data 
augmentation model

MLE with learnable data 
augmentation 𝑓) 𝒙 , 𝒚 :
• E-step to get closed-form 𝑞,
• M-step to update 𝑝!
• Reused reward-learning 

step to update 𝜙

Note: updates of 𝜃 depend on 
experience 𝑓,, thus the resulting 
𝜃' is a function of 𝜙

Same form as 
standard equation
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● GANs ⇔ RL ⇔ VI
● Empower RL/VI algo. (e.g., PPO) to stabilize GAN training [Wu et al., 2020]

Panoramic Learning: reusing algorithms – Ex.3

𝝐
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● GANs ⇔ RL ⇔ VI
● Empower RL/VI algo. (e.g., PPO) to stabilize GAN training [Wu et al., 2020]

Panoramic Learning: reusing algorithms – Ex.3

(a) Re-use PPO objective for GAN 
training: discourage excessively large 
updates by “trapping” the update size 
around 1

(b) Re-use importance weighting in a VI 
perspective: greatly reduced variance in both 
generator and discriminator losses

Improved performance on a range of problems, including 
image generation, text generation, and text style transfer 83



Summary so far …

● The standard equation of objective

● Experience function 𝑓 can encode different types of experience
! Data instances, constraints, informativeness, reward, adversary models, …

● Enable panoramic learning with ALL experience
! Re-use or repurpose originally specialized algorithms to other contexts
! Experience compositonality
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min
1, $

− 𝔼1 𝒙,𝒚
1

+ 𝛽𝔻
1

− 𝛼ℍ 𝑞𝑓 𝒙 , 𝒚 𝑞 𝒙, 𝒚 , 𝑝$ 𝒙, 𝒚



Toward A “Standard Model” of ML

● Loss

● Experience

● Optimization solver

● Model architecture

85

Optimization 
solver

Loss Model 
architecture

min! ℒ 𝜃, ℰ

Experience



min
1, $

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼1 𝒙
1
𝑓(𝒙)𝑞 𝒙 , 𝑝$ 𝒙

The zoo of optimization solvers

● Like the Standard Equation as a master objective for many paradigms, is there 
a master solver for optimization of loss?

● No (yet) such a general algorithm
● Alternating Projection:
! Most widely used
! EM, Variational EM (Variational inference), Wake-Sleep, …

Optimization of the loss, subject to 𝑞 ∈ 𝒫VWXY.
Convex to 𝑞 when 𝛼, 𝛽 > 0 and 𝔻 is convex  

Optimization 
solver

Loss Model 
architecture

	min%	ℒ '
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Generalization of the classic 
Variational EM

Generalized E-step
Support all types of experience

M-step

𝑞 𝒙 = exp
1
1

/ 𝑍
𝛽 log 𝑝$(𝒙) + 𝑓 𝒙 ; .

𝛼

(1) Teacher step:

(2) Student step:

The Teacher-Student Mechanism

min
1, $

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼1 𝒙
1
𝑓(𝒙 ; . )𝑞 𝒙 , 𝑝$ 𝒙

min
$
𝔼# 𝒙

1
log 𝑝"(𝒙)

when 𝛼, 𝛽 > 0 and 𝔻 = CE
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𝑞 𝒙 = exp
1
1

/ 𝑍
𝛽 log 𝑝$(𝒙) + 𝑓 𝒙 ; .

𝛼

(1) Teacher step:

(2) Student step:

The Teacher-Student Mechanism

min
1, $

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼1 𝒙
1
𝑓(𝒙 ; . )𝑞 𝒙 , 𝑝$ 𝒙

min
$
𝔼# 𝒙

1
log 𝑝"(𝒙)

when 𝛼, 𝛽 > 0 and 𝔻 = CE
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min
1, $

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼1 𝒙
1
𝑓(𝒙)𝑞 𝒙 , 𝑝$ 𝒙

Some “advanced” (specialized) techniques

● Alternating Projection:
! EM, Variational EM (Variational inference), Wake-Sleep, …
! SGD, Back-propagation (BP)

● Convex duality, Lagrangian -- Kernel Tricks
● Integer linear programming (ILP)
● Probability functional descent (PFD) [Chu et al., 2019] -- Influence function, 

gives a neat formulation of GAN-like optimization and a few others
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Optimization 
solver

Loss Model 
architecture

	min%	ℒ '



I: Duality

● Structured MaxEnt Discrimination (SMED) [Zhu and Xing, 2013]:

! Solve the (primal) Lagrangian:

! Solve Lagrangian multipliers 𝝀 from the dual problem (when                                          )

90

min
1, 356

− 𝛼𝐻 𝑞 − 𝛽𝔼1
1

+ 𝑈(𝝃)

𝑠. 𝑡. −𝔼1 Δ𝐹Z 𝒚; 𝜽 − ΔℓZ 𝒚 ≤ 𝜉Z ∀𝑖

log 𝑝 𝜽

max
𝝀67, ∑:$;-

[
4,𝒚=𝒚$

∗
𝜆4 𝒚 Δℓ4(𝒚) −

1
2
[

4,𝒚=𝒚$
∗
𝜆4 𝒚 Δ𝑇4 𝒚

.

𝑝 𝜽 = 𝒩 𝜽 0, 𝐼 ; 𝑈 𝜉 = ∑𝜉!,

Allows kernel trick for 
nonlinear interactions 
b/w experiences

𝑞 𝜽 = exp
1
1

/ 𝑍(𝝀)𝛽 log 𝑝(𝜽) + ∑4,𝒚=𝒚$∗ 𝜆4(𝒚)(Δ𝐹4 𝒚; 𝜽 − Δℓ4 𝒚 )
𝛼



II: Influence Function and Probability Functional Descent

● Gradient descent in the space of probability measures 𝒫 𝑋

● Influence function Ψ> 𝑥 :

● With a linear approximation jℐ 𝑝 to ℐ(𝑝) around 𝑝7:

● Thus, once we obtain the influence function, we can optimize 𝑝 by decreasing 
𝔼3∼> Ψ>& 𝑥
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min
*∈𝒫(])

ℐ(𝑝) ℐ: 𝒫 𝑋 → ℝ : a probability functional

𝑑ℐ* 𝜒 = 7
]
Ψ* 𝑥 𝜒 𝑑𝑥

= 𝔼1 Ψ* 𝑥 − 𝔼* Ψ* 𝑥
Gateaux differential of ℐ at 𝑝 in 
the direction 𝜒 = 𝑞 − 𝑝

�ℐ 𝑝 = ℐ 𝑝6 + 𝑑ℐ*5 𝑝 − 𝑝6 .
= 𝔼-∼* Ψ*6 𝑥 + 𝑐𝑜𝑛𝑠𝑡.

[Chu et al., 2019] 



● Often no closed-form influence function, e.g., when 𝔻 is JSD or W-
distance 

● Approximate with convex duality:
§ Convex conjugate  ℐ∗ 𝜓 = sup

$
∫3 𝜓 𝒙 𝑢 𝑑𝑥 − ℐ 𝑢

§ Influence function is obtained via
§ Parameterize 𝜓 as below to recover optimization of generator and discriminator

● The whole optimization of ℐ(𝑝) is thus

Adversarial learning using PFD 

ℐ 𝑝$ = 𝔻
1
𝑝C 𝒙 , 𝑝$ 𝒙

Ψ>' 𝑥 = argmax@ 𝔼𝒙∼>' 𝜓 𝒙 − ℐ∗(𝜓)

min$ maxK𝔼*(757 log 𝐶K − 𝔼*& log (1 − 𝐶K)
[Chu et al., 2019] 

𝜓𝝓(𝒙) ≔ 0.5 log 1 − 𝐶, − 0.5 log2

Ψ𝑱𝑺 = argmax, 𝔼>()*) log 𝐶, − 𝔼>' log (1 − 𝐶,)
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Other popular algorithms in the PFD view

● PFD recovers optimization procedures in some popular algorithms

94

Estimation of the 
influence function

[Chu et al., 2019] 



Toward A “Standard Model” of ML

● Loss

● Experience

● Optimization solver

● Model architecture
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Optimization 
solver

Loss Model 
architecture

min! ℒ 𝜃, ℰ

Experience



Model architecture – more in Lecture#2

● Relatively well explored:
! Neural network design
! Graphical model design
! Compositional architectures
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Optimization 
solver

Loss Model 
architecture

	min%	ℒ '

min
1, $

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼1 𝒙
1
𝑓(𝒙)𝑞 𝒙 , 𝑝$ 𝒙

Next lecture: a composable catalog of building blocks



Summary: A “Standard Model” of ML

● Loss + experience
! Standard Equation (SE)

● Optimization solver
! The extended EM algorithm gives a general primal solution in many cases
! PFD gives a neat formulation for some cases (e.g., GANs)

● Model architecture: vast libraries of building blocks à compositionality 
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min
1, $

− 𝔼1 𝒙,𝒚
1

+ 𝛽𝔻
1

− 𝛼ℍ 𝑞𝑓 𝒙 , 𝒚 𝑞 𝒙, 𝒚 , 𝑝$ 𝒙, 𝒚

Next: practical implications of the ML “Standard Model”

Optimization 
solver

Loss Model 
architecture

	min%	ℒ '



Schedule

● Lecture#1: Theory: The Standard Model of ML
A blueprint of ML paradigms for ALL experience

(Jan 19 Thursday, 4:45pm-6:15pm UK Time)

● Lecture#2: Tooling: Operationalizing The Standard Model
Compose your ML solutions like playing Lego
(Jan 20 Thursday, 1:00pm-2:30pm)

● Lecture#3: Computing: Modern infrastructure for productive ML 
Automatic tuning, distributing, and scheduling 
(Jan 20 Thursday, 4:45pm-6:15pm)
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