

A "Standard Model" for **Machine Learning**


Zhiting Hu, Hao Zhang, Eric Xing

Presenters

Zhiting Hu
Assistant Professor
@UCSD

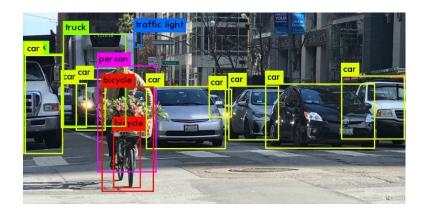
Hao Zhang
Assistant Professor
@UCSD

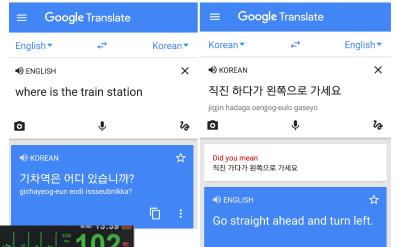
Eric P. Xing

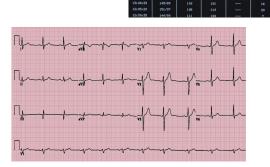
Professor @ CMU

President @ MBZUAI

Co-founder @ Petuum






Real-world Machine Learning Problems

Data and experience of all kinds

Type-2 diabetes is 90% more common than type-1

Data examples

Rules/Constraints

Knowledge graphs

Rewards

Auxiliary agents

- And all combinations of such
- Interpolations between such
- ...

Adversaries

Master classes

An Example: ML for Healthcare

A ready-to-use real Al solution is extremely complex, given all these experiences to train on

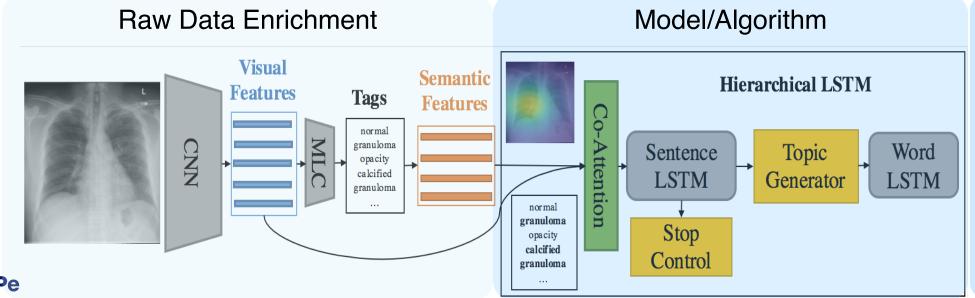
Use Case: Automatic Medical (or other) Report Generation

Findings:

There are no focal areas of consolidation. No suspicious pulmonary opacities. Heart size within normal limits.

No pleural effusions.

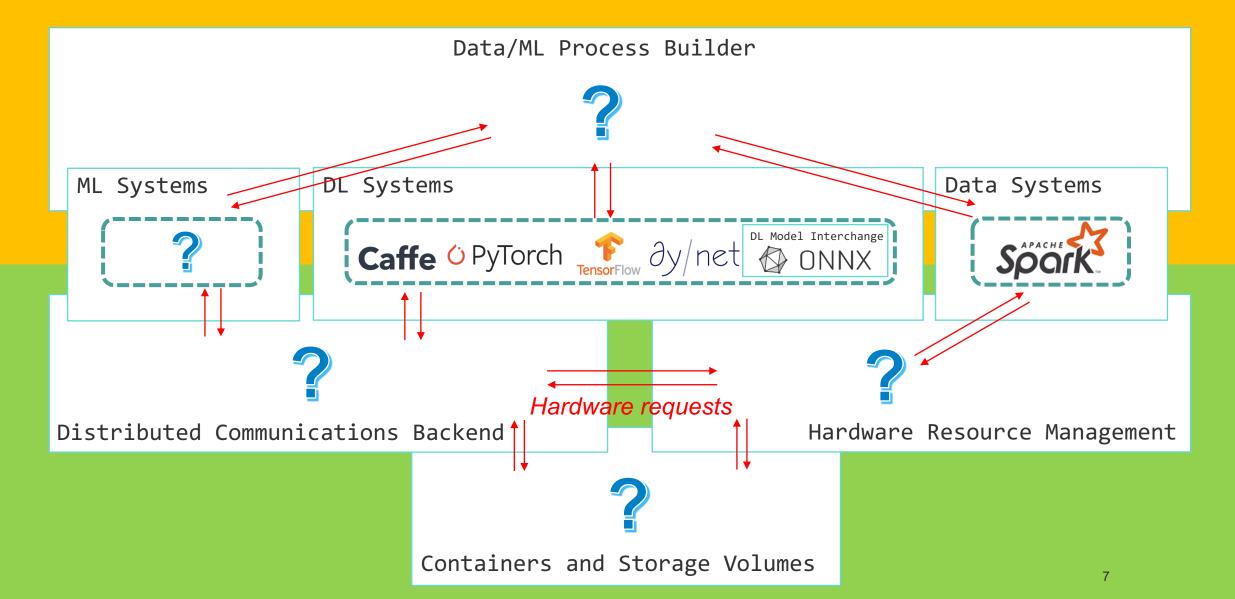
There is no evidence of pneumothorax.


Degenerative changes of the thoracic spine.

Impression:

No acute cardiopulmonary abnormality.

- Abnormal regions in medical images are difficult to identify.
- How to localize the image regions and tags that are relevant to a sentence?
- How to distribute topics across sentences
- How to make report readable to humans?

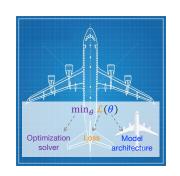


Inter-operability between diverse systems?

An Al solution

Data wrangling Feature engineering Model compiling Algorithm designing Distributed training Debugging Resource provisioning Hardware management Fault recovery ...etc

Build versus Craft

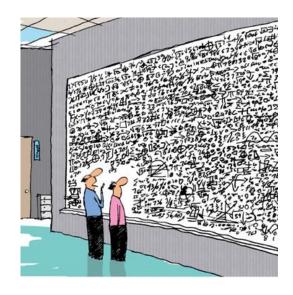


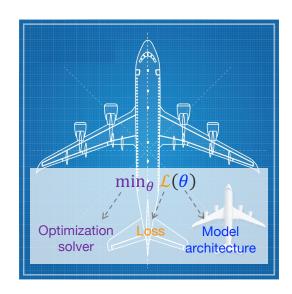
Schedule

• Lecture#1: Theory: The Standard Model of ML A blueprint of ML paradigms for ALL experience (Jan 19 Thursday, 4:45pm-6:15pm UK Time)

 Lecture#2: Tooling: Operationalizing The Standard Model Compose your ML solutions like playing Lego (Jan 20 Thursday, 1:00pm-2:30pm)

 Lecture#3: Computing: Modern infrastructure for productive ML Automatic tuning, distributing, and scheduling (Jan 20 Thursday, 4:45pm-6:15pm)





The Standard Model - A Blueprint for ML

Experience of all kinds

Type-2 diabetes is 90% more common than type-1

Data examples


Rules/Constraints

Knowledge graphs

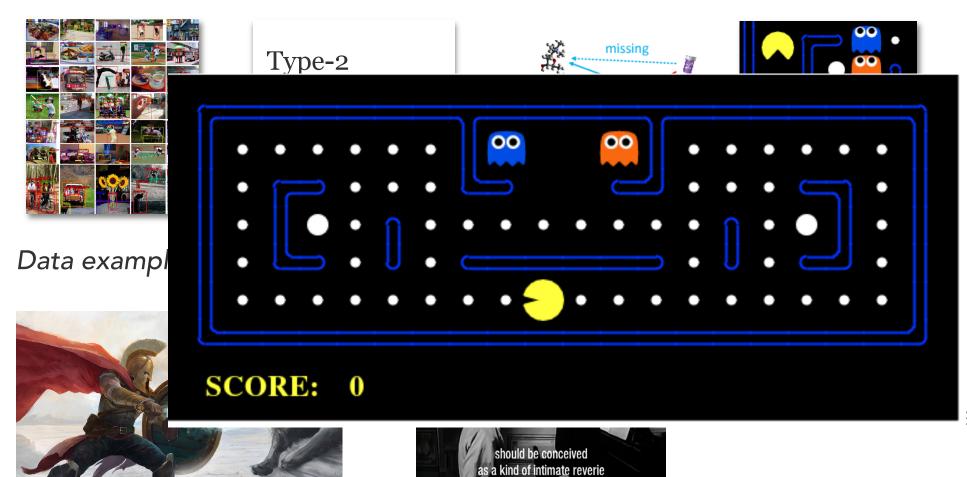
Rewards

Auxiliary agents

- And all combinations of such
- Interpolations between such
- ...

Adversaries

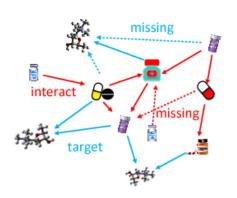
Master classes



Experience of all kinds

Auxiliary agents

ations thereof



Experience of all kinds

Type-2 diabetes is 90% more common than type-1

Data examples

Rules/Constraints


Knowledge graphs

Rewards

Auxiliary agents

Adversaries

Master classes

- And all combinations of such
- Interpolations between such
- . . .

Human learning vs machine learning

Type-2 diabetes is 90% more common than type-1

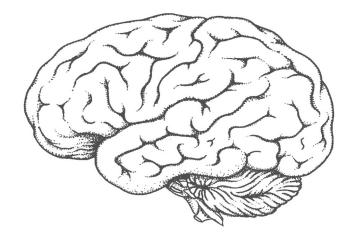
Data examples

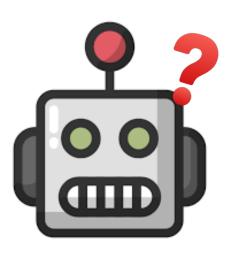
Rules/Constraints

Knowledge graphs

Rewards

Auxiliary agents



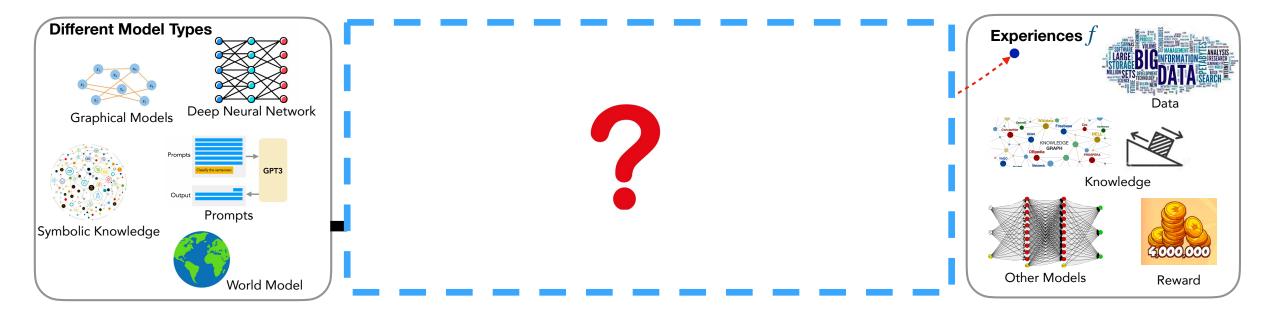

Adversaries

Master classes

- And all combinations of such
- Interpolations between such
- ...

The zoo of ML/AI models

- Neural networks
 - Convolutional networks
 - AlexNet, GoogleNet, ResNet
 - Recurrent networks, LSTM
 - Transformers
 - BERT, GPTs
- Graphical models
 - Bayesian networks
 - Markov Random fields
 - Topic models, LDA
 - HMM, CRF


- Kernel machines
 - Radial Basis Function Networks
 - Gaussian processes
 - Deep kernel learning
 - Maximum margin
 - SVMs
- Decision trees
- PCA, Probabilistic PCA, Kernel PCA, ICA
- Boosting

The zoo of ML/Al algorithms

The zoo of ML/Al algorithms

maximum likelihood estimation reinforcement learning as inference

data re-weighting

inverse RL

policy optimization

active learning

data augmentation

actor-critic

reward-augmented maximum likelihood

label smoothing

imitation learning

softmax policy gradient

adversarial domain adaptation

nam adaptation

posterior regularization

GANs

constraint-driven learning

knowledge distillation

intrinsic reward

prediction minimization

generalized expectation

regularized Bayes

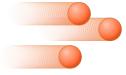
learning from measurements

energy-based GANs

weak/distant supervision

Really hard to navigate, and to realize

- Depending on individual's expertise and creativity
- Bespoke, delicate pieces of art
- Like an airport with different runways for every different types of aircrafts


Physics in the 1800's

- Electricity & magnetism:
 - Coulomb's law, Ampère, Faraday, ...

- Theory of light beams:
 - Particle theory: Isaac Newton, Laplace, Plank
 - Wave theory: Grimaldi, Chris Huygens, Thomas Young, Maxwell

- Law of gravity
 - Aristotle, Galileo, Newton, ...

Diverse

electro-

magnetic

theories

Standard Model in Physics

Maxwell's Eqns: original form

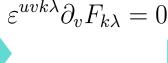
(1) Gauss' Law Equivalent to Gauss' Law for magnetism Faraday's Law (with the Lorentz Force and Poisson's Law) (4) Ampère-Maxwell Law $P = -\xi p$ $Q = -\xi q$ $R = -\xi r$ Ohm's Law The electric elasticity P = kf Q = kg R = khequation ($\mathbf{E} = \mathbf{D}/\epsilon$) Continuity of charge

Simplified w/ rotational symmetry

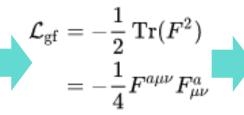
Further simplified w/ symmetry of special relativity

Standard Model w/ Yang-Mills theory and US(3) forces? symmetry

Unification of fundamental

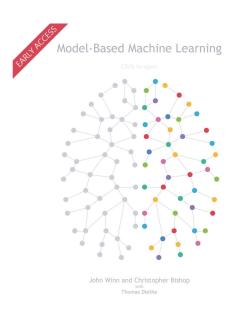

$$\nabla \cdot \mathbf{D} = \rho_{v}$$

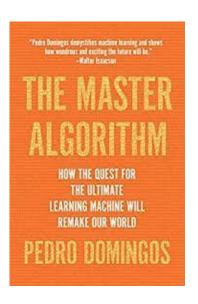
$$\nabla \cdot \mathbf{B} = 0$$


$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

$$\partial_v F^{uV} = \frac{4\pi}{c} j^u$$


Quest for more standardized, unified ML principles


Machine Learning 3: 253–259, 1989 © 1989 Kluwer Academic Publishers – Manufactured in The Netherlands

EDITORIAL

Toward a Unified Science of Machine Learning

[P. Langley, 1989]

REVIEW _____ Communicated by Steven Nowlan

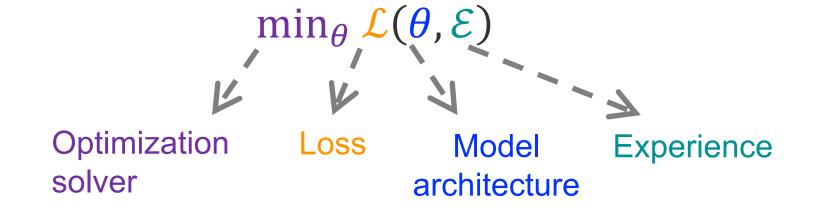
A Unifying Review of Linear Gaussian Models

Sam Roweis*

Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, U.S.A.

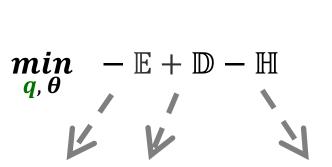
Zoubin Ghahramani*

Department of Computer Science, University of Toronto, Toronto, Canada



Toward A "Standard Model" of ML

- Loss
- Experience
- Optimization solver
- Model architecture



Toward A "Standard Model" of ML

- Loss
- Experience
- Optimization solver
- Model architecture

Experience Divergence Uncertainty

Toward A "Standard Model" of ML

Toward a 'Standard Model' of Machine Learning

[⋄] Petuum Inc., Pittsburgh, USA

[Hu & Xing, Harvard Data Science Review, 2022]: https://arxiv.org/abs/2108.07783

Experience Divergence Uncertainty

[†] Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, USA

[‡] Machine Learning Department, Carnegie Mellon University, Pittsburgh, USA

[‡] Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE

Maximum likelihood estimation (MLE) at a close look:

- The most classical learning algorithm
- Supervised:
 - Observe data $\mathcal{D} = \{(x^*, y^*)\}$
 - Solve with SGD

$$\min_{\theta} - \mathbb{E}_{(\boldsymbol{x}^*, \boldsymbol{y}^*) \sim \mathcal{D}} \left[\log p_{\theta}(\boldsymbol{y}^* | \boldsymbol{x}^*) \right]$$

- Unsupervised:
 - Observe $\mathcal{D} = \{(x^*)\}$, y is latent variable
 - Posterior $p_{\theta}(y|x)$
 - Solve with EM:

$$\min_{\theta} - \mathbb{E}_{\boldsymbol{x}^* \sim \mathcal{D}} \left[\log \int_{\boldsymbol{y}} p_{\theta}(\boldsymbol{x}^*, \boldsymbol{y}) \right]$$

- E-step imputes latent variable y through expectation on complete likelihood
- M-step: supervised MLE

MLE as Entropy Maximization

• Duality between supervised MLE and maximum entropy, when p is exponential family

MLE as Entropy Maximization

- Unsupervised MLE can be achieved by maximizing the negative free energy:
 - Introduce an auxiliary variational distribution q(y|x) (and then play with its entropy and cross entropy, etc.)

$$\log \int_{\mathbf{y}} p_{\theta}(\mathbf{x}^*, \mathbf{y}) = \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)} \left[\log \frac{p_{\theta}(\mathbf{x}^*, \mathbf{y})}{q(\mathbf{y}|\mathbf{x}^*)} \right] + \text{KL}(q(\mathbf{y}|\mathbf{x}^*) || p_{\theta}(\mathbf{y}|\mathbf{x}^*))$$

$$\geq H(q(\mathbf{y}|\mathbf{x}^*)) + \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)}[\log p_{\theta}(\mathbf{x}^*,\mathbf{y})]$$

Alternating projection

Algorithms for Unsupervised MLE

$$\min_{\theta} - \mathbb{E}_{\boldsymbol{x}^* \sim \mathcal{D}} \left[\log \int_{\boldsymbol{y}} p_{\theta}(\boldsymbol{x}^*, \boldsymbol{y}) \right]$$

1) Solve with EM

$$\log \int_{\mathbf{y}} p_{\theta}(\mathbf{x}^*, \mathbf{y}) = \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)} \left[\log \frac{p_{\theta}(\mathbf{x}^*, \mathbf{y})}{q(\mathbf{y}|\mathbf{x}^*)} \right] + \text{KL}(q(\mathbf{y}|\mathbf{x}^*) \mid\mid p_{\theta}(\mathbf{y}|\mathbf{x}^*))$$

$$\geq H(q(\mathbf{y}|\mathbf{x}^*)) + \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)} [\log p_{\theta}(\mathbf{x}^*, \mathbf{y})]$$

- E-step: Maximize $\mathcal{L}(q, \theta)$ w.r.t q, equivalent to minimizing KL by setting $q(\mathbf{y}|\mathbf{x}^*) = p_{\theta^{old}}(\mathbf{y}|\mathbf{x}^*)$
- M-step: Maximize $\mathcal{L}(q, \boldsymbol{\theta})$ w.r.t $\boldsymbol{\theta}$: $\max_{\boldsymbol{\theta}} \mathbb{E}_{q(\boldsymbol{y}|\boldsymbol{x}^*)}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}^*, \boldsymbol{y})]$

Experience Manifold

Algorithms for Unsupervised MLE (cont'd)

$$\log \int_{\mathbf{y}} p_{\theta}(\mathbf{x}^*, \mathbf{y}) = \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)} \left[\log \frac{p_{\theta}(\mathbf{x}^*, \mathbf{y})}{q(\mathbf{y}|\mathbf{x}^*)} \right] + \text{KL}(q(\mathbf{y}|\mathbf{x}^*) \mid\mid p_{\theta}(\mathbf{y}|\mathbf{x}^*))$$

$$\geq H(q(\mathbf{y}|\mathbf{x}^*)) + \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)} [\log p_{\theta}(\mathbf{x}^*, \mathbf{y})]$$

- 2) When model p_{θ} is complex, directly working with the true posterior $p_{\theta}(y|x^*)$ is intractable \Rightarrow Variational EM
 - Consider a sufficiently restricted family Q of q(y|x) so that minimizing the KL is tractable
 - E.g., parametric distributions, factorized distributions
 - **E**-step: Maximize $\mathcal{L}(q, \theta)$ w.r.t $q \in Q$, equivalent to minimizing KL
 - M-step: Maximize $\mathcal{L}(q, \boldsymbol{\theta})$ w.r.t $\boldsymbol{\theta}$: $\max_{\boldsymbol{\theta}} \mathbb{E}_{q(\boldsymbol{y}|\boldsymbol{x}^*)}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}^*, \boldsymbol{y})]$

Algorithms for Unsupervised MLE (cont'd)

$$\log \int_{\mathbf{y}} p_{\theta}(\mathbf{x}^*, \mathbf{y}) = \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)} \left[\log \frac{p_{\theta}(\mathbf{x}^*, \mathbf{y})}{q(\mathbf{y}|\mathbf{x}^*)} \right] + \text{KL}(q(\mathbf{y}|\mathbf{x}^*) \mid\mid p_{\theta}(\mathbf{y}|\mathbf{x}^*))$$

$$\geq H(q(\mathbf{y}|\mathbf{x}^*)) + \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)} [\log p_{\theta}(\mathbf{x}^*, \mathbf{y})]$$

- 3) When q is complex, e.g., deep NNs, optimizing q in E-step is difficult (e.g., high variance) \Rightarrow Wake-Sleep algorithm [Hinton et al., 1995]
 - Sleep-phase (E-step): $\min_{\phi} \text{KL}(p_{\theta}(\boldsymbol{y}|\boldsymbol{x}^*)||q_{\phi}(\boldsymbol{y}|\boldsymbol{x}^*))$ ----> Reverse KL
 - Wake-phase (M-step): Maximize $\mathcal{L}(q, \theta)$ w.r.t $\theta : \max_{\theta} \mathbb{E}_{q(y|x^*)}[\log p_{\theta}(x^*, y)]$

Other tricks: reparameterization in VAE ('2014), control variates in NVIL ('2014)

Quick summary of MLE

- Supervised:
 - Duality with MaxEnt
 - Solve with SGD
- Unsupervised:
 - Lower bounded by negative free energy
 - Solve with EM, VEM, Wake-Sleep, ...

- Close connections to MaxEnt
- With MaxEnt, algorithms (e.g., EM) arises naturally

Posterior Regularization (PR)

- Make use of constraints in Bayesian learning
 - An auxiliary posterior distribution $q(\theta)$
 - Slack variable ξ , constant weight $\alpha = \beta > 0$

$$\min_{q,\xi} - \alpha H(q) - \beta \mathbb{E}_{q} \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] + \xi$$

$$s.t. - \mathbb{E}_{q} \left[f_{\theta}(\mathbf{x}, \mathbf{y}) \right] \leq \xi$$
[Ganchev et al., 2010]

- E.g., max-margin constraint for linear regression [Jaakkola et al., 1999] and general models (e.g., LDA, NNs) [Zhu et al., 2014]
- Solution for q

$$q(\boldsymbol{\theta}) = \exp\left\{ \frac{\beta \log p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{y}) + f_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{y})}{\alpha} \right\} / Z$$

More general learning leveraging PR

- No need to limit to Bayesian learning
- E.g., Complex rule constraints on general models [Hu et al., 2016], where
 - o q can be over arbitrary variables, e.g., q(x, y)
 - $p_{\theta}(x, y)$ is NNs of arbitrary architectures with parameters θ

$$\min_{q, \theta, \xi} - \alpha H(q) - \beta \mathbb{E}_{q} \left[\log p_{\theta}(\boldsymbol{x}, \boldsymbol{y}) \right] + \xi$$

$$s. t. \mathbb{E}_{q(\boldsymbol{x}, \boldsymbol{y})} \left[1 - r(\boldsymbol{x}, \boldsymbol{y}) \right] \leq \xi$$

E.g., r(x, y) is a 1st-order logical rule:

If sentence x contains word ``but''

 \Rightarrow its sentiment y is the same as the sentiment after "but"

EM for the general PR

Rewrite without slack variable:

$$\min_{q,\theta} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] - \mathbb{E}_{q(\mathbf{x}, \mathbf{y})} \left[f(\mathbf{x}, \mathbf{y}) \right]$$

Solve with EM

• E-step:
$$q(x,y) = \exp\left\{\frac{\beta \log p_{\theta}(x,y) + f(x,y)}{\alpha}\right\} / Z$$

• M-step:
$$\min_{\boldsymbol{\theta}} \mathbb{E}_q \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{y}) \right]$$

Reformulating unsupervised MLE with PR

$$\log \int_{\mathbf{y}} p_{\theta}(\mathbf{x}^*, \mathbf{y}) \ge H(q(\mathbf{y}|\mathbf{x}^*)) + \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)}[\log p_{\theta}(\mathbf{x}^*, \mathbf{y})]$$

• Introduce arbitrary q(y|x)

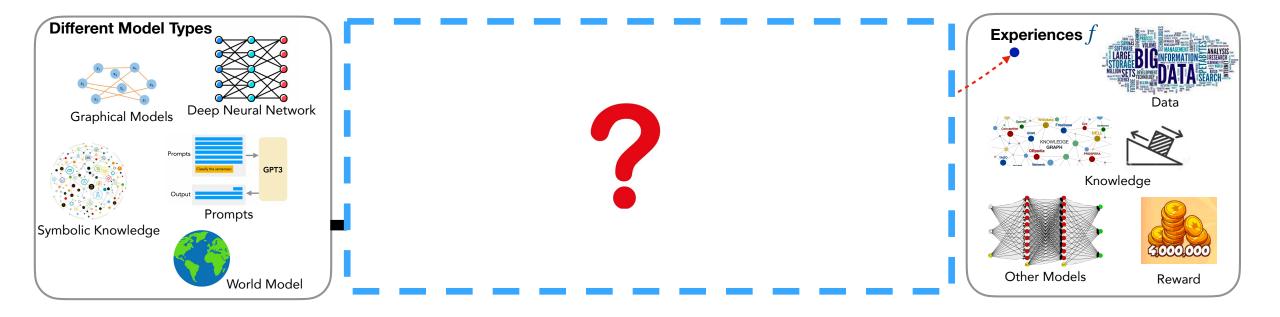
$$\min_{q,\theta,\xi} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] + \xi$$

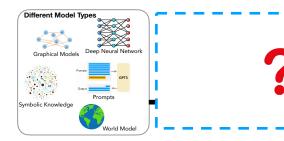
$$s.t. - \mathbb{E}_q \left[f(\mathbf{x}; \mathcal{D}) \right] < \xi$$

Data as constraint.

Given $x \sim \mathcal{D}$, this constraint doesn't influence the solution of q and θ

- $f(\mathbf{x}; \mathcal{D}) := \log \mathbb{E}_{x^* \sim \mathcal{D}} [\mathbb{1}_{x^*}(\mathbf{x})]$
 - A constraint saying x must equal to one of the true data points
 - Or alternatively, the (log) expected similarity of x to dataset \mathcal{D} , with $1(\cdot)$ as the similarity measure (we'll come back to this later)


$$\alpha = \beta = 1$$


A "Standard Model" of Machine Learning

The Standard Equation (SE)

$$\min_{q, \theta, \xi \ge 0} \beta \mathbb{D} \left(q(\mathbf{x}, \mathbf{y}), p_{\theta}(\mathbf{x}, \mathbf{y}) \right) - \alpha \mathbb{H}(q) + \xi$$

$$s. t. - \mathbb{E}_{q(\mathbf{x}, \mathbf{y})} \left[f(\mathbf{x}, \mathbf{y}) \right] < \xi$$

Equivalently:

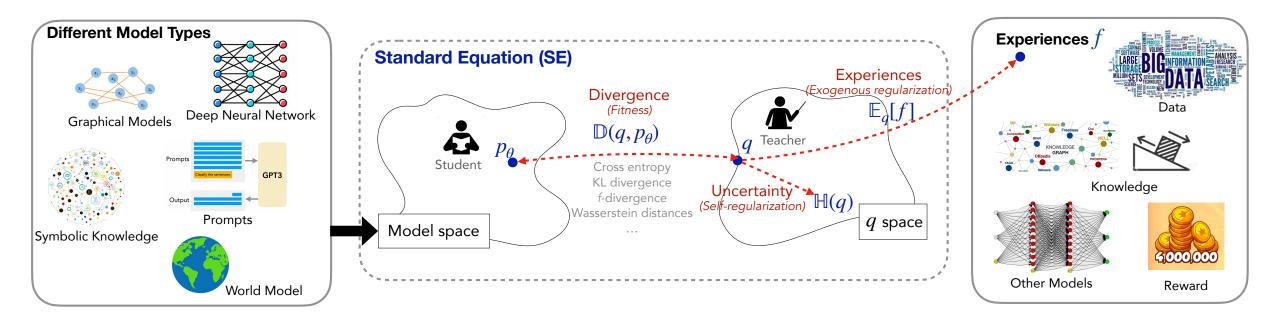
$$\min_{q,\theta} - \mathbb{E}_{q(\mathbf{x},\mathbf{y})} \left[f(\mathbf{x},\mathbf{y}) \right] + \beta \mathbb{D} \left(q(\mathbf{x},\mathbf{y}), p_{\theta}(\mathbf{x},\mathbf{y}) \right) - \alpha \mathbb{H}(q)$$

3 terms:

Experience (exogenous regularizations) e.g., data examples, rules

Divergence (fitness) e.g., Cross Entropy

Uncertainty (self-regularization) e.g., Shannon entropy



The Standard Equation (SE)

$$\min_{q,\theta} - \mathbb{E}_{q(x,y)} \left[f(x,y) \right] + \beta \mathbb{D} \left(q(x,y), p_{\theta}(x,y) \right) - \alpha \mathbb{H}(q)$$

Overview: well-known algorithms/paradigms recovered by SE

Experience type	Experience function f	Divergence \mathbb{D}	α	β	Algorithm
	$f_{ ext{data}}(oldsymbol{x}; \mathcal{D})$	CE	1	1	Unsupervised MLE
Data instances	$f_{ ext{data}}(oldsymbol{x},oldsymbol{y};\mathcal{D})$	CE	1	ϵ	Supervised MLE
	$f_{ ext{data-self}}(oldsymbol{x},oldsymbol{y};\mathcal{D})$	CE	1	ϵ	Self-supervised MLE
Data instances	$f_{ ext{data-w}}(oldsymbol{t}; \mathcal{D})$	CE	1	ϵ	Data Re-weighting
	$f_{ ext{data-aug}}(oldsymbol{t}; \mathcal{D})$	CE	1	ϵ	Data Augmentation
	$f_{ ext{active}}(oldsymbol{x},oldsymbol{y};\mathcal{D})$	CE	1	ϵ	Active Learning (Ertekin et al., 2007)
Knowledge	$f_{rule}(m{x},m{y})$	CE	1	1	Posterior Regularization (Ganchev et al., 2010)
Knowledge	$f_{rule}(m{x},m{y})$	CE	\mathbb{R}	1	Unified EM (Samdani et al., 2012)
	$\log Q^{ heta}(oldsymbol{x},oldsymbol{y})$	CE	1	1	Policy Gradient
Reward	$\log Q^{ heta}(oldsymbol{x},oldsymbol{y}) + Q^{in, heta}(oldsymbol{x},oldsymbol{y})$	CE	1	1	+ Intrinsic Reward
$f_{ m data}$ $f_{ m rule}($ $f_{ m rule}$	$Q^{ heta}(oldsymbol{x},oldsymbol{y})$	CE	$\rho > 0$	$\rho > 0$	RL as Inference
Model	$f_{ ext{model}}^{ ext{mimicking}}(oldsymbol{x},oldsymbol{y};\mathcal{D})$	CE	1	ϵ	Knowledge Distillation (G. Hinton et al., 2015)
	binary classifier	JSD	0	1	Vanilla GAN (Goodfellow et al., 2014)
Variational	discriminator	f-divergence	0	1	f-GAN (Nowozin et al., 2016)
	1-Lipschitz discriminator	W_1 distance	0	1	WGAN (Arjovsky et al., 2017)
	1-Lipschitz discriminator	KL	0	1	PPO-GAN (Y. Wu et al., 2020)
Online	$f_{ au}(oldsymbol{t})$	CE	$\rho > 0$	$\rho > 0$	Multiplicative Weights (Freund & Schapire, 1997)

SE Component: Experience Function f

Different choices of experience function f lead to different algorithms:

$$\min_{q,\theta} - \mathbb{E}_{q(x,y)} \left[f(x,y) \right] + \beta \mathbb{D} \left(q(x,y), p_{\theta}(x,y) \right) - \alpha \mathbb{H}(q)$$

Experience

(exogenous regularizations) e.g., data examples, rules

Set Divergence to Cross Entropy $\mathbb{D}(q, p_{\theta}) = -\mathbb{E}_{q}[\log p_{\theta}]$

Set Uncertainty to Shannon Entropy $\mathbb{H}(q) = H(q) := -\mathbb{E}_q[\log q]$

SE with Data Experience -- Supervised MLE

Observe data $\mathcal{D} = \{(\mathbf{x}^*, \mathbf{y}^*)\}$

$$\min_{q,\theta} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] - \mathbb{E}_q \left[f(\mathbf{x}, \mathbf{y}) \right]$$

$$f \coloneqq f(\mathbf{x}, \mathbf{y}; \mathcal{D}) = \log \mathbb{E}_{(\mathbf{x}^*, \mathbf{y}^*) \sim \mathcal{D}} [\mathbb{1}_{(\mathbf{x}^*, \mathbf{y}^*)} (\mathbf{x}, \mathbf{y})]$$

$$\alpha = 1, \beta = \epsilon$$

Teacher step:
$$q(\mathbf{x}, \mathbf{y}) = \exp\left\{\frac{\beta \log p_{\theta}(\mathbf{x}, \mathbf{y}) + f(\mathbf{x}, \mathbf{y}; \mathcal{D})}{\alpha}\right\}/Z \approx \exp\{f(\mathbf{x}, \mathbf{y}; \mathcal{D})\}/Z = \tilde{p}_{d}(\mathbf{x}, \mathbf{y})$$

Student step:
$$\min_{\theta} - \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right]$$
 Negative data log-likelihood

SE with Data Experience -- Unsupervised MLE

Observe data $\mathcal{D} = \{(x^*)\}$

$$\min_{q,\theta} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] - \mathbb{E}_q \left[f(\mathbf{x}, \mathbf{y}) \right]$$

$$f \coloneqq f(x; \mathcal{D}) = \log \mathbb{E}_{x^* \sim \mathcal{D}} [\mathbb{1}_{x^*}(x)]$$
 $\alpha = \beta = 1$

$$q = q(y|x)$$

$$\min_{q,\theta} - H(q) - \mathbb{E}_q \left[\log p_{\theta}(x, y) \right]$$

Negative variational lower bound

SE with "Oracle Data Experience": Active Learning

- Have access to a vast pool of unlabeled data instances
- Can select instances (queries) to be labeled by an oracle (e.g., human)

- Experiences:
 - u(x) measures *informativeness* of an instance x
 - e.g., Uncertainty on x, measured by Shannon entropy $H(p_{\theta}(y|x))$
 - Encode instances + oracle labels:

$$f(\mathbf{x}, \mathbf{y}; \text{Oracle}) = \log \mathbb{E}_{\mathbf{x}^* \sim \mathcal{D}, \mathbf{y}^* \sim \text{Oracle}(\mathbf{x}^*)} [\mathbb{1}_{(\mathbf{x}^*, \mathbf{y}^*)}(\mathbf{x}, \mathbf{y})]$$

SE and Active Learning

$$\min_{q,\theta} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] - \mathbb{E}_{q(\mathbf{x}, \mathbf{y})} \left[f(\mathbf{x}, \mathbf{y}) \right]$$

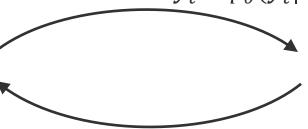
$$f \coloneqq f(x, y; Oracle) + u(x)$$
 $\alpha = 1, \beta = \epsilon$

• Teacher step:
$$q(x, y) = \exp\left\{\frac{\beta \log p_{\theta}(x, y) + f(x, y; Oracle) + u(x)}{\alpha}\right\} / Z$$

Student step: $\min_{\theta} - \mathbb{E}_q \left[\log p_{\theta}(x, y) \right]$

Equivalent to [e.g., Ertekin et al., 07]:

- Randomly draw a subset $\mathcal{D}_{sub} = \{x^*\}$
- Draw a query x^* from \mathcal{D}_{sub} according to $\exp\{u(x)\}$
- Get label y^* for x^* from the oracle
- Maximize log likelihood on (x*, y*)


SE with Reward Experience

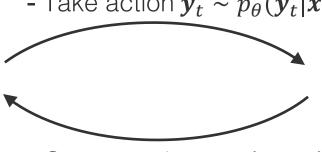
Markov Decision Process (MDP)

- State x_t
- Take action $y_t \sim p_{\theta}(y_t|x_t)$

- Get reward $r_t = r(\mathbf{x}_t, \mathbf{y}_t)$
- New state x_{t+1}

ENVIRONMENT

Petuum



SE with Reward Experience: Reinforcement Learning

Markov Decision Process (MDP)

- State x_t
- Take action $y_t \sim p_{\theta}(y_t|x_t)$

- Get reward $r_t = r(x_t, y_t)$
- New state x_{t+1}

ENVIRONMENT

- $p_{\theta}(x, y) = p_{\theta}(y|x)p_{0}(x)$, where $p_{\theta}(y|x)$ is the policy, $p_{0}(x)$ is the start state distribution
- $Q^{\theta}(x,y)$ expected future reward of taking action y in state x and continuing the current policy p_{θ}

$$Q^{\theta}(\mathbf{x}, \mathbf{y}) = \mathbb{E}_{p_{\theta}} \left[\sum_{t=0}^{\infty} r_t \mid \mathbf{x}_0 = \mathbf{x}, \mathbf{y}_0 = \mathbf{y} \right]$$

• $\mu^{\theta}(x)$ – state distribution

$$\mu^{\theta}(\mathbf{x}) = \sum_{t=0}^{\infty} p(\mathbf{x}_t = \mathbf{x})$$

SE with Reward Experience I: Policy Gradient

$$\min_{q,\,\theta} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] - \mathbb{E}_q \left[f(\mathbf{x}, \mathbf{y}) \right]$$

Policy gradient

$$f^{\theta}(\mathbf{x}, \mathbf{y}) := \log Q^{\theta}(\mathbf{x}, \mathbf{y}) \qquad \alpha = \beta = 1$$

- Teacher step: $q^{(n)}(\mathbf{x}, \mathbf{y}) = p_{\theta^{(n)}}(\mathbf{x}, \mathbf{y}) Q^{\theta^{(n)}}(\mathbf{x}, \mathbf{y}) / Z$
- Student step:

$$\mathbb{E}_{q^{(n)}(\boldsymbol{x},\boldsymbol{y})} \left[\nabla_{\theta} \log p_{\theta}(\boldsymbol{x},\boldsymbol{y}) \right] + \mathbb{E}_{q^{(n)}(\boldsymbol{x},\boldsymbol{y})} \left[\nabla_{\theta} f_{\text{reward},1}^{\theta}(\boldsymbol{x},\boldsymbol{y}) \right] \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{(n)}}$$

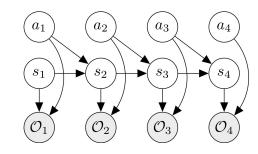
$$= 1/Z \cdot \sum_{\boldsymbol{x}} p_{0}(\boldsymbol{x}) \nabla_{\theta} \sum_{\boldsymbol{y}} p_{\theta}(\boldsymbol{y}|\boldsymbol{x}) Q^{\theta}(\boldsymbol{x},\boldsymbol{y}) \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{(n)}} \qquad \text{(log-determinant of } \boldsymbol{\theta} = \boldsymbol{\theta}^{(n)}$$

$$= 1/Z \cdot \sum_{\boldsymbol{x}} \mu^{\theta}(\boldsymbol{x}) \sum_{\boldsymbol{y}} Q^{\theta}(\boldsymbol{x},\boldsymbol{y}) \nabla_{\theta} p_{\theta}(\boldsymbol{y}|\boldsymbol{x}) \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{(n)}} \qquad \text{(policy gradient of } \boldsymbol{\theta} = \boldsymbol{\theta}^{(n)}$$

(policy gradient theorem)

(log-derivative trick)

SE with Reward Experience II: RL as Inference


$$\min_{q,\theta} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] - \mathbb{E}_q \left[f(\mathbf{x}, \mathbf{y}) \right]$$

RL-as-inference [Dayan'97; Levine'18, ...]

$$f^{\theta}(\mathbf{x}, \mathbf{y}) \coloneqq Q^{\theta}(\mathbf{x}, \mathbf{y}) \qquad \alpha = \beta = \rho \ (>0)$$

$$\min_{q,\theta} - \rho H(q) - \rho \mathbb{E}_{q} \left[\log p_{\theta}(\mathbf{x}, \mathbf{y}) \right] - \mathbb{E}_{q(\mathbf{x}, \mathbf{y})} \left[\begin{array}{c} Q^{\theta}(\mathbf{x}, \mathbf{y}) \end{array} \right] \\
\geq -\log \mathbb{E}_{p_{\theta}(\mathbf{x}, \mathbf{y})} \left[p(o = 1 \mid \mathbf{x}, \mathbf{y}) \right]$$

Negative variational lower bound

Define random variable $o \in \{0,1\}$, $p(o = 1) \propto \exp\{Q^{\theta^t}(x,y)/\rho\}$ (reward excitement fuc.)

SE with Other Experience

Experience type	Experience function f	Divergence \mathbb{D}	α	β	Algorithm	
	$f_{ ext{data}}(oldsymbol{x}; \mathcal{D})$	CE	1	1	Unsupervised MLE	
$ \text{Data instances} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Supervised MLE					
Data instances	$f_{ ext{data-self}}(m{x},m{y};\mathcal{D})$	CE	1 1 Unsupervised MLE 1 ϵ Supervised MLE 1 ϵ Self-supervised MLE 1 ϵ Data Re-weighting 1 ϵ Data Augmentation 1 ϵ Active Learning (Ertekin et al., 2007) 1 1 Posterior Regularization (Ganchev et al., 2010) R 1 Unified EM (Samdani et al., 2012) 1 1 Policy Gradient 1 1 + Intrinsic Reward $\rho > 0$ $\rho > 0$ RL as Inference 1 ϵ Knowledge Distillation (G. Hinton et al., 2015) 1 Vanilla GAN (Goodfellow et al., 2014) 1 gence 0 1 F-GAN (Nowozin et al., 2016) 1 Augmentation (G. Hinton et al., 2016) 2 Augmentation (G. Hinton et al., 2016) 3 Augmentation (G. Hinton et al., 2016) 4 Active Learning (Ertekin et al., 2016) 5 Augmentation (Ganchev et al., 2017) 6 Augmentation (Ganchev et al., 2017) 7 Augmentation (Ganchev et al., 2017) 8 Augmentation (Ganchev et al., 2017) 9 PPO-GAN (Y. Wu et al., 2020)	Self-supervised MLE		
Data Instances	$f_{ ext{data-w}}(oldsymbol{t}; \mathcal{D})$	CE	1	ϵ	Data Re-weighting	
$f_{ ext{data-aug}}(m{t};\mathcal{D})$ CE 1 ϵ Data Augmentation $f_{ ext{active}}(m{x},m{y};\mathcal{D})$ CE 1 ϵ Active Learning (Ertekin et al., 2007) $f_{ ext{rule}}(m{x},m{y})$ CE 1 1 Posterior Regularization (Ganchev et al., 2010) $f_{ ext{rule}}(m{x},m{y})$ CE \mathbb{R} 1 Unified EM (Samdani et al., 2012) $\log Q^{\theta}(m{x},m{y})$ CE 1 1 Policy Gradient						
	$f_{ ext{active}}(oldsymbol{x},oldsymbol{y};\mathcal{D})$	CE	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Knowlodgo	$f_{rule}(m{x},m{y})$	CE	1	1	Posterior Regularization (Ganchev et al., 2010)	
Knowledge	$f_{rule}(oldsymbol{x},oldsymbol{y})$	CE	\mathbb{R}	1	Unified EM (Samdani et al., 2012)	
]	$\log Q^{ heta}(oldsymbol{x},oldsymbol{y})$	CE	1	1	Policy Gradient	
Reward	$\log Q^{ heta}(oldsymbol{x},oldsymbol{y}) + Q^{in, heta}(oldsymbol{x},oldsymbol{y})$	CE	1	1	Data Re-weighting Data Augmentation Active Learning (Ertekin et al., 2007) Posterior Regularization (Ganchev et al., 2010) Unified EM (Samdani et al., 2012) Policy Gradient + Intrinsic Reward > 0 RL as Inference Knowledge Distillation (G. Hinton et al., 2015) Vanilla GAN (Goodfellow et al., 2014) f-GAN (Nowozin et al., 2016) WGAN (Arjovsky et al., 2017)	
	$Q^{ heta}(oldsymbol{x},oldsymbol{y})$	CE	$\rho > 0$	$\rho > 0$	RL as Inference	
Model	$f_{ ext{model}}^{ ext{mimicking}}(oldsymbol{x},oldsymbol{y};\mathcal{D})$	CE	1	ϵ	Knowledge Distillation (G. Hinton et al., 2015)	
	binary classifier	JSD	0	1	Vanilla GAN (Goodfellow et al., 2014)	
Variational	discriminator	f-divergence	0	1	f-GAN (Nowozin et al., 2016)	
	1-Lipschitz discriminator	W_1 distance	0	1	WGAN (Arjovsky et al., 2017)	
	1-Lipschitz discriminator	KL	0	1	PPO-GAN (Y. Wu et al., 2020)	
Online	$f_{ au}(oldsymbol{t})$	CE	$\rho > 0$	$\rho > 0$	Multiplicative Weights (Freund & Schapire, 1997)	

See paper for more details

SE Component: Divergence Function D

We now look at the choices of divergence D:

$$\min_{q,\theta} - \mathbb{E}_{q(x,y)} \left[f(x,y) \right] + \beta \mathbb{D} \left(q(x,y), p_{\theta}(x,y) \right) - \alpha \mathbb{H}(q)$$

$$\bigcup_{q,\theta} \text{Divergence}$$
(fitness)
$$e.g., Cross Entropy$$

SE with Cross Entropy or KL Divergence

$$\min_{q,\theta} - \mathbb{E}_{q(x,y)} \left[f(x,y) \right] + \beta \mathbb{D} \left(q(x,y), p_{\theta}(x,y) \right) - \alpha \mathbb{H}(q)$$

$$\min_{q,\theta} - \mathbb{E}_{q(x,y)} \left[f(x,y) \right] + \beta \mathbb{E}_{q} \left[\log p_{\theta}(x,y) \right] - \alpha \mathbb{H}(q)$$

All the algorithms we've just seen

SE with Other Divergences

• For notation simplicity, we use x to replace (x, y)

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(x), p_{\theta}(x)\right) - \mathbb{E}_{q(x)}\left[f(x)\right]$$

SE with Other Divergences

• For notation simplicity, we use x to replace (x, y)

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(\mathbf{x}), p_{\theta}(\mathbf{x})\right) - \mathbb{E}_{q(\mathbf{x})}\left[f(\mathbf{x})\right]$$

- Same as supervised MLE: $f := f(x; \mathcal{D}), \alpha = 1, \beta = \epsilon$
- Equivalent to $\min_{\theta} \mathbb{D}\left(p_d(\mathbf{x}), p_{\theta}(\mathbf{x})\right)$

SE with Other Divergences

• For notation simplicity, we use x to replace (x, y)

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(\mathbf{x}), p_{\theta}(\mathbf{x})\right) - \mathbb{E}_{q(\mathbf{x})}\left[f(\mathbf{x})\right]$$

- Same as supervised MLE: $f := f(x; \mathcal{D}), \alpha = 1, \beta = \epsilon$
- Equivalent to $\min_{\theta} \mathbb{D}\left(p_d(x), p_{\theta}(x)\right)$
- Solve with probability functional descent (PFD) [Chu et al., 2019]
 - $p_{\theta}(x)$ can be optimized by minimizing $\mathbb{E}_{p_{\theta}}[\Psi(x)]$, where $\Psi(x)$ is the influence function for \mathbb{D} at p_{θ}^t
 - Ψ is obtained with convex duality

$$\Psi(\mathbf{x}) = \operatorname{argmax}_{\psi} \mathbb{E}_{p_{\theta}}[\psi(\mathbf{x})] - \mathbb{D}^*(\psi)$$

o So the whole optimization is $\min_{\theta} \max_{\psi} \mathbb{E}_{p_{\theta}}[\psi(x)] - \mathbb{D}^*(\psi)$

Convex conjugate of D

SE with JS Divergence: Generative Adversarial Learning (GANs)

$$\min_{\theta} \mathbb{D}\left(p_d(\mathbf{x}), p_{\theta}(\mathbf{x})\right)$$

- Solve with probability functional descent (PFD) [Chu et al., 2019]
 - o $p_{\theta}(x)$ can be optimized by minimizing $\mathbb{E}_{p_{\theta}}[\Psi(x)]$, where $\Psi(x)$ is the influence function for \mathbb{D} at p_{θ}^{t}
 - Ψ is obtained with convex duality

$$\Psi(\mathbf{x}) = \operatorname{argmax}_{\psi} \mathbb{E}_{p_{\theta}}[\psi(\mathbf{x})] - \mathbb{D}^{*}(\psi)$$

So the whole optimization is

$$\min_{\theta} \max_{\psi} \mathbb{E}_{p_{\theta}}[\psi(\mathbf{x})] - \mathbb{D}^*(\psi)$$

Parameterize ψ with an NN C_{ϕ} . E.g., when \mathbb{D} is JSD and

$$\psi_{\phi}(\mathbf{x}) \coloneqq 0.5 \log (1 - C_{\phi}) - 0.5 \log 2$$

Plugging into the equation recovers vanilla GAN training

Jensen-Shannon Divergence:
$$JS(q||p_{\theta}) = \frac{1}{2}KL(q||h) + \frac{1}{2}KL(p_{\theta}||h)$$
 where $h = \frac{1}{2}(q + p_{\theta})$

SE with Wasserstein Distance: W-GAN

$$\min_{\theta} \mathbb{D}\left(p_d(\mathbf{x}), p_{\theta}(\mathbf{x})\right)$$

• Based on the Kantorovich duality, the 1st-order Wasserstein distance between two distributions q and p is written as

$$W_1(q,p) = \sup_{\|\psi\|_{L} \le 1} \mathbb{E}_q[\psi(\mathbf{x})] - \mathbb{E}_p(\psi(\mathbf{x}))$$

- where $||\psi||_L \le 1$ is the constraint of $\psi \colon \mathcal{X} \to \mathbb{R}$ being a 1-Lipschitz function
- Setting $\mathbb D$ to W_1 leads to the Wasserstein GAN algorithm [Arjovsky et al., 2017]

$$\min_{\theta} W_1(q, p) = \min_{\theta} \sup_{\|\psi\|_{L} \le 1} \mathbb{E}_{p_d}[\psi(\mathbf{x})] - \mathbb{E}_{p_\theta}(\psi(\mathbf{x}))$$

Dynamic SE

- So far, we have seen SE as the ultimate learning objective
 - Fully defines the learning problem in an analytical form

$$\min_{q,\theta} - \mathbb{E}_{q(x,y)} \left[f(x,y) \right] + \beta \mathbb{D} \left(q(x,y), p_{\theta}(x,y) \right) - \alpha \mathbb{H}(q)$$

- In a dynamic or online setting, the learning objective itself may be evolving over time
 - Data instances may follow changing distributions or come from evolving tasks (e.g., lifelong learning)
 - Experience in a strategic game context can involve complex interactions with the target model through co-training or adversarial dynamics

Dynamic SE

- So far, we have seen SE as the ultimate learning objective
 - Fully defines the learning problem in an analytical form

$$\min_{q,\theta} - \mathbb{E}_{q(x,y)} \left[f(x,y) \right] + \beta \mathbb{D} \left(q(x,y), p_{\theta}(x,y) \right) - \alpha \mathbb{H}(q)$$

- In a dynamic or online setting, the learning objective itself may be evolving over time
- An extended view of the SE for learning in dynamic contexts
 - SE is a core part of an outer loop
 - \circ E.g., consider dynamic experience f_{τ} indexed by time τ

for
$$\tau = 1, 2, ...$$
:

Acquire experience f_{τ} ,

Solve SE: $\min_{q,\theta} - \mathbb{E}_{q(x,y)} \left[f_{\tau}(x,y) \right] + \beta \mathbb{D} \left(q(x,y), p_{\theta}(x,y) \right) - \alpha \mathbb{H}(q)$

Dynamic SE with Adversarial Experience: Variations of GAN

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(\mathbf{x}), p_{\theta}(\mathbf{x})\right) - \mathbb{E}_{q(\mathbf{x})}\left[f(\mathbf{x})\right]$$

• Recall in MLE, *f* is a fixed function

$$f \coloneqq f(\mathbf{x}; \mathcal{D}) = \log \mathbb{E}_{\mathbf{x}^* \sim \mathcal{D}} \left[\mathbb{1}_{\mathbf{x}^*}(\mathbf{x}) \right]$$

- Intuitively, see f as a similarity metric that measures similarity of sample x against real data \mathcal{D}
- Instead of the manually fixed metric, can we learn a metric f_{ϕ} ?

Dynamic SE with Adversarial Experience: Variations of GAN

• Augment the standard objective to account for ϕ :

$$\min_{\theta} \max_{q} \min_{q} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(\mathbf{x}), p_{\theta}(\mathbf{x})\right) - \mathbb{E}_{q(\mathbf{x})}\left[f_{\phi}(\mathbf{x})\right] + \mathbb{E}_{p_{d}(\mathbf{x})}\left[f_{\phi}(\mathbf{x})\right]$$

- Set $\alpha = 0$, $\beta = 1$. Under mild conditions, the objective recovers:
 - \circ Vanilla GAN [Goodfellow et al., 2014], when $\mathbb D$ is JS Divergence and $f_{\pmb\phi}$ is a binary classifier
 - o f-GAN [Nowozin et al., 2016], when $\mathbb D$ is f-divergence
 - \circ W-GAN [Arjovsky et al., 2017], when $\mathbb D$ is Wasserstein distance and $f_{\pmb\phi}$ is a 1-Lipschitz function
 - PPO-GAN [Wu et al., 2020], when **D** is KL divergence

Quick recap: well-known algorithms/paradigms recovered by SE

Experience type	Experience function f	Divergence \mathbb{D}	α	β	Algorithm
	$f_{ ext{data}}(oldsymbol{x}; \mathcal{D})$	CE	1	1	Unsupervised MLE
Knowledge $f_{rule}(\boldsymbol{x}, \boldsymbol{y})$ CE 1 1 Posterior Regularization (Gamma $f_{rule}(\boldsymbol{x}, \boldsymbol{y})$ CE \mathbb{R} 1 Unified EM (Samdani et al., log $Q^{\theta}(\boldsymbol{x}, \boldsymbol{y})$ CE 1 1 Policy Gradient $Q^{\theta}(\boldsymbol{x}, \boldsymbol{y}) + Q^{in,\theta}(\boldsymbol{x}, \boldsymbol{y})$ CE 1 1 Hintrinsic Reward $Q^{\theta}(\boldsymbol{x}, \boldsymbol{y})$ CE $Q^{\theta}(\boldsymbol{x}, \boldsymbol{y})$	$f_{ ext{data}}(oldsymbol{x},oldsymbol{y};\mathcal{D})$	CE	1	ϵ	Supervised MLE
	$f_{ ext{data-self}}(m{x},m{y};\mathcal{D})$	CE	1	ϵ	Self-supervised MLE
	Data Re-weighting				
	$f_{ ext{data-aug}}(oldsymbol{t}; \mathcal{D})$	CE	1	ϵ	Data Augmentation
$ \text{Data instances} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Active Learning (Ertekin et al., 2007)				
Knowledge	$f_{rule}(m{x},m{y})$	CE	1	1	Posterior Regularization (Ganchev et al., 2010)
Xnowleage	$f_{rule}(m{x},m{y})$	CE	\mathbb{R}	1	Unified EM (Samdani et al., 2012)
Reward	$\log Q^{ heta}(oldsymbol{x},oldsymbol{y})$	CE	1	1	Policy Gradient
	$\log Q^{ heta}(oldsymbol{x},oldsymbol{y}) + Q^{in, heta}(oldsymbol{x},oldsymbol{y})$	CE	1	1	+ Intrinsic Reward
	$Q^{ heta}(oldsymbol{x},oldsymbol{y})$	CE	$\rho > 0$	$\rho > 0$	RL as Inference
Model	$f_{ ext{model}}^{ ext{mimicking}}(oldsymbol{x},oldsymbol{y};\mathcal{D})$	CE	1	ϵ	Knowledge Distillation (G. Hinton et al., 2015)
	binary classifier	JSD	0	1	Vanilla GAN (Goodfellow et al., 2014)
Variational	discriminator	f-divergence	0	1	f-GAN (Nowozin et al., 2016)
	1-Lipschitz discriminator	W_1 distance	0	1	WGAN (Arjovsky et al., 2017)
	1-Lipschitz discriminator	KL	0	1	PPO-GAN (Y. Wu et al., 2020)
Online	$f_{ au}(oldsymbol{t})$	CE	$\rho > 0$	$\rho > 0$	Multiplicative Weights (Freund & Schapire, 1997)

Paradigms not (yet) covered by SE:

- Meta learning
- Lifelong learning
- O ...

Interesting future work to study the connections

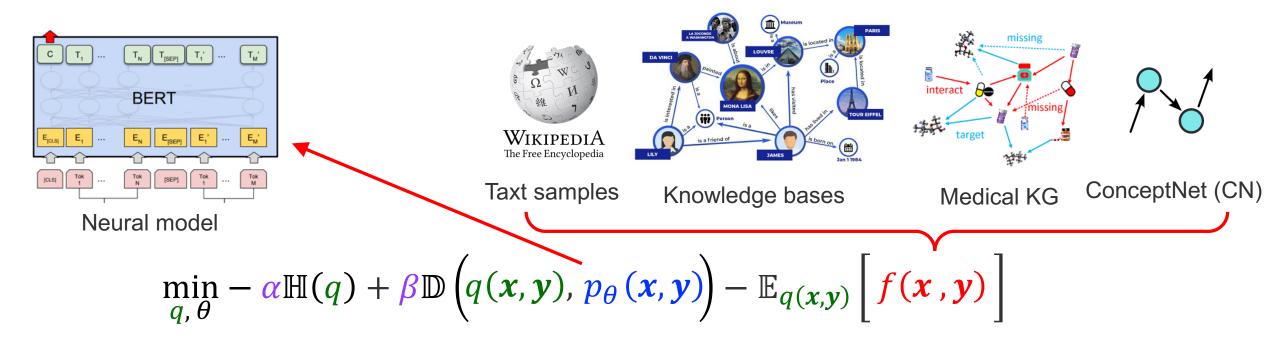
Why this is useful?

- Panoramic Learning: learning with ALL experience
 - Experience composition
 - Reuse specialized algorithms -- one runway for different aircrafts
- Complex interaction between experience
- Multi-agent game theoretic learning using all experience

- Distinct types of experience are all formulated with f(x, y)
- Combine and plug different f functions into SE to drive learning

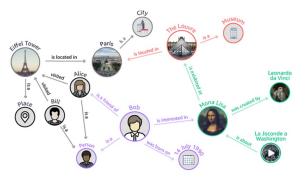
$$SE(f, \mathbb{D}, \alpha, \beta)$$

$$f = w_1 \cdot f(x \mid \boxtimes) + w_2 \cdot f(x \mid \boxtimes) + w_3 \cdot f(x \mid \bigcirc) + w_4 \cdot f(x \mid \boxtimes) + \cdots$$

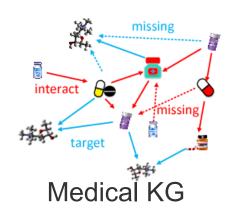

Focus on what to use, instead of worrying about how to use

Ex.1: Using symbolic knowledge to learn neural networks

Hu et al., ACL 2016, "Harnessing Deep Neural Networks with Logic Rules"
Hu et al., NeurIPS 2020, "Deep Generative Models with Learnable Knowledge Constraints"
Tan et al., EMNLP 2020, "Summarizing Text on Any Aspects: A Knowledge-Informed Weakly-Supervised Approach"



Ex.2: Using neural networks to "learn" symbolic knowledge


$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(\mathbf{x},\mathbf{y}), p_{\theta}(\mathbf{x},\mathbf{y})\right) - \mathbb{E}_{q(\mathbf{x},\mathbf{y})}\left[f(\mathbf{x},\mathbf{y})\right]$$

- θ : graph structure to be learned
- p_{θ} : a simulation model generating medical task samples (x, y) based on the knowledge graph θ

Measuring likelihood of sample (x, y) under a trained medical neural model

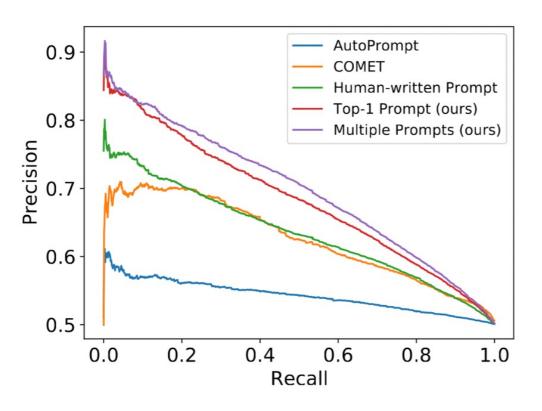
Commonsense graph

Panoramic Learning: experience composition Ex 2: Using peural networks to "learn" symbolic knowledge

Ex.2: Using neural networks to "learn" symbolic knowledge

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(\mathbf{x},\mathbf{y}), p_{\theta}(\mathbf{x},\mathbf{y})\right) - \mathbb{E}_{q(\mathbf{x},\mathbf{y})}\left[f(\mathbf{x},\mathbf{y})\right]$$

Head entity	Relation	Tail entity	Head entity	Relation	Tail entity
exercise	prevent	obesity	students	worth celebrating	graduate
apple	business	Mac	newborn	can but not good at	sit
sleep	prevent	illness	social worker	can help	foster child
mall	place for	shopping	honey	ingredient for	honey cake
gym	place for	sweat	cabbage	ingredient for	cabbage salad
wheat	source of	flour	China	China separated by the ocean	
oil	source of	fuel	Africa	separated by the ocean	Europe

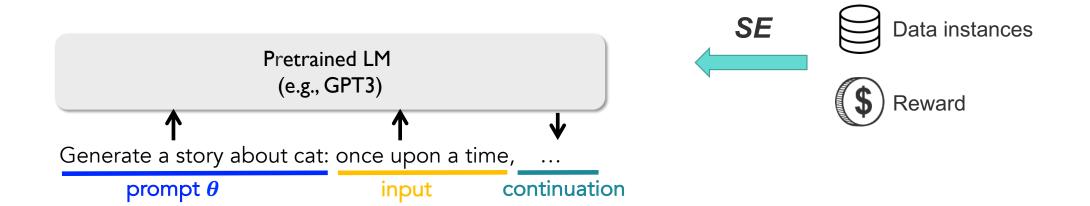

Figure 4: Examples of knowledge tuples harvested from ROBERTA-LARGE with MULTI-PROMPTS.

Panoramic Learning: experience composition Ex.2: Using neural networks to "learn" symbolic knowledge

AutoPrompt 8.0 LPAQA Human-written Prompt Top-1 Prompt (ours) Multiple Prompts (ours) Precision 0.7 0.6 0.5 0.2 0.0 0.4 0.6 8.0 1.0 Recall

Figure 2: Precision-recall curve on ConceptNet relations.

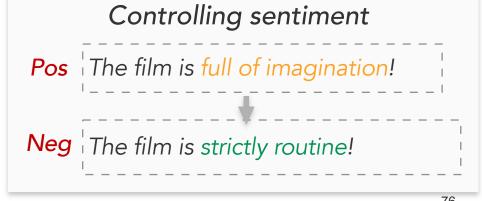
Figure 3: Precision-recall curve on LAMA relations.



Ex.3: Learning prompts to control large pretrained models

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(x,y), p_{\theta}(x,y)\right) - \mathbb{E}_{q(x,y)}\left[f(x,y)\right]$$

Experiences f


Panoramic Learning: experience composition Ex.4: Learning controllable text generation – more in Lecture#2

Combine and plug different f functions into SE to drive learning

Enable applications for controllable content generation

Controllable text generation

f = sentiment classifier+ linguistic rules+ language model

Panoramic Learning: reusing algorithms

 Unifying perspective of diverse paradigms (each tailored for a specific type of experience) under SE

- Combining or integrating different experiences
- Re-use or repurpose originally specialized algorithms
 - Systematic idea transfer and solution exchange
 - Solving challenges in one paradigm by applying well-known solutions from another
 - Accelerate innovations across research areas

Panoramic Learning: *reusing algorithms – Ex.1*

- Empower reward learning algo. to learning rules [Hu et al., 2018]

Algorithm	f	lpha	β	\mathbb{D}
Unsupervised MLE	$f(oldsymbol{x}; \mathcal{D})$	1	1	CE
Supervised MLE	$f(oldsymbol{x},oldsymbol{y};\mathcal{D})$	1	ϵ	CE
Active Learn.	$f(\boldsymbol{x},\boldsymbol{y};\mathcal{D}) + u(\boldsymbol{x})$	temp., > 0	ϵ	CE
Reward-augment MLE	$f_{ ext{metric}}(oldsymbol{x},oldsymbol{y};\mathcal{D},r)$	1	ϵ	CE
PG for Seq. Gen.	$f_{ ext{metric}}(oldsymbol{x},oldsymbol{y};\mathcal{D},r)$	1	1	CE
Posterior Reg.	$f_{rule}(m{x},m{y})$	weight, > 0	α	CE
Unified EM	$f_{rule}(m{x},m{y})$	weight, $\in \mathbb{R}$	1	CE
Policy Gradient (PG)	$\log Q^{ex}(oldsymbol{x},oldsymbol{y})$	1	1	CE
+ Intrinsic Reward	$\log Q^{ex}(oldsymbol{x},oldsymbol{y}) + Q^{in}(oldsymbol{x},oldsymbol{y})$	1	1	CE
RL as inference	$Q^{ex}(oldsymbol{x},oldsymbol{y})$	temp., > 0	α	CE
Vanilla GAN	binary classifier	0	1	JSD
$f ext{-} ext{GAN}$	discriminator	0	1	f-divg.
WGAN	1-Lipschitz discriminator	0	1	W dist.
	Unsupervised MLE Supervised MLE Active Learn. Reward-augment MLE PG for Seq. Gen. Posterior Reg. Unified EM Policy Gradient (PG) + Intrinsic Reward RL as inference Vanilla GAN f-GAN	Unsupervised MLE $f(\boldsymbol{x}; \mathcal{D})$ Supervised MLE $f(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D})$ Active Learn. $f(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D}) + u(\boldsymbol{x})$ Reward-augment MLE $f_{\text{metric}}(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D}, r)$ PG for Seq. Gen. $f_{\text{metric}}(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D}, r)$ Posterior Reg. $f_{rule}(\boldsymbol{x}, \boldsymbol{y})$ Unified EM $f_{rule}(\boldsymbol{x}, \boldsymbol{y})$ Policy Gradient (PG) $\log Q^{ex}(\boldsymbol{x}, \boldsymbol{y})$ + Intrinsic Reward $\log Q^{ex}(\boldsymbol{x}, \boldsymbol{y}) + Q^{in}(\boldsymbol{x}, \boldsymbol{y})$ RL as inference $Q^{ex}(\boldsymbol{x}, \boldsymbol{y})$ Vanilla GAN binary classifier f -GAN discriminator	Unsupervised MLE $f(\boldsymbol{x}; \mathcal{D})$ 1 Supervised MLE $f(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D})$ 1 Active Learn. $f(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D}) + u(\boldsymbol{x})$ temp., > 0 Reward-augment MLE $f_{\text{metric}}(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D}, r)$ 1 PG for Seq. Gen. $f_{\text{metric}}(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D}, r)$ 1 Posterior Reg. $f_{rule}(\boldsymbol{x}, \boldsymbol{y})$ weight, > 0 Unified EM $f_{rule}(\boldsymbol{x}, \boldsymbol{y})$ weight, $\in \mathbb{R}$ Policy Gradient (PG) $\log Q^{ex}(\boldsymbol{x}, \boldsymbol{y})$ weight, $\in \mathbb{R}$ Place of the property of the prope	Unsupervised MLE $f(\boldsymbol{x}; \mathcal{D})$ 1 1 6 Active Learn. $f(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D}) + u(\boldsymbol{x})$ temp., > 0 ϵ Reward-augment MLE $f_{\text{metric}}(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D}, r)$ 1 ϵ PG for Seq. Gen. $f_{\text{metric}}(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D}, r)$ 1 ϵ Weight, > 0 α Unified EM $f_{rule}(\boldsymbol{x}, \boldsymbol{y})$ weight, $\in \mathbb{R}$ 1 Policy Gradient (PG) $\log Q^{ex}(\boldsymbol{x}, \boldsymbol{y})$ weight, $\in \mathbb{R}$ 1 Platrinsic Reward $\log Q^{ex}(\boldsymbol{x}, \boldsymbol{y}) + Q^{in}(\boldsymbol{x}, \boldsymbol{y})$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

- Rules in PR

 Reward in RL
- Empower reward learning algo. to learning rules [Hu et al., 2018]

$$\min_{q,\theta} - \mathbb{E}_{q(x,y)} \left[f(x,y) \right] + \beta \mathbb{D} \left(q(x,y), p_{\theta}(x,y) \right) - \alpha \mathbb{H}(q)$$

MaxEnt inverse RL [Ziebart'08]:

- Parameterize reward $f_{\phi}(x, y)$ with ϕ
- Learn ϕ with the additional optimization step:

$$\min_{\boldsymbol{\phi}} - \mathbb{E}_{(\boldsymbol{x}^*, \boldsymbol{y}^*) \sim \mathcal{D}} \left[\log q_{\boldsymbol{\phi}}(\boldsymbol{x}^*, \boldsymbol{y}^*) \right]$$

Reuse to learn parameterized rules

Note: q is a function of f_{ϕ} , thus q depends on ϕ

PR with learnable rule constraints $f_{\phi}(x, y)$:

- E-step to get closed-form q_{ϕ}
- M-step to update p_{θ}
- Reused reward-learning
 step to update φ

- Data in supervised MLE

 Reward in RL
- Empower reward learning algo. to learning data augmentation [Hu et al., 2019]

	Algorithm	f	α	β	\mathbb{D}
	Unsupervised MLE	$f(oldsymbol{x}; \mathcal{D})$	1	1	CE
#	Supervised MLE	$f(oldsymbol{x},oldsymbol{y};\mathcal{D})$	1	ϵ	CE
	Active Learn.	$f(oldsymbol{x},oldsymbol{y};\mathcal{D})+u(oldsymbol{x})$	temp., > 0	ϵ	CE
	Reward-augment MLE	$f_{ ext{metric}}(oldsymbol{x},oldsymbol{y};\mathcal{D},r)$	1	ϵ	CE
	PG for Seq. Gen.	$f_{ ext{metric}}(oldsymbol{x},oldsymbol{y};\mathcal{D},r)$	1	1	CE
	Posterior Reg.	$f_{rule}(m{x},m{y})$	weight, > 0	α	CE
	Unified EM	$f_{rule}(m{x},m{y})$	weight, $\in \mathbb{R}$	1	CE
	Policy Gradient (PG)	$\log Q^{ex}(oldsymbol{x},oldsymbol{y})$	1	1	CE
	+ Intrinsic Reward	$\log Q^{ex}(oldsymbol{x},oldsymbol{y}) + Q^{in}(oldsymbol{x},oldsymbol{y})$	1	1	CE
	RL as inference	$Q^{ex}(oldsymbol{x},oldsymbol{y})$	temp., > 0	α	CE
•	Vanilla GAN	binary classifier	0	1	JSD
	$f ext{-}GAN$	discriminator	0	1	f-divg.
	WGAN	1-Lipschitz discriminator	0	1	W dist.

- Data in supervised MLE

 Reward in RL
- Empower reward learning algo. to learning data augmentation [Hu et al., 2019]

$$\min_{q,\theta} - \mathbb{E}_{q(x,y)} \left[f(x,y) \right] + \alpha \mathbb{D} \left(q(x,y), p_{\theta}(x,y) \right) - \beta \mathbb{H}(q)$$

Intrinsic reward learning [Zheng et al.,08]:

- Reward $f_{\phi} = f^{ex} + f_{\phi}^{in}$
- I.e., parameterize (intrinsic) reward f_{ϕ}^{in} with ϕ
- Learn ϕ with the additional optimization step:

 $\min_{m{\phi}} \mathcal{L}_{SE}(m{\theta^t}(m{\phi}))$ Reuse to learn parameterized data augmentation model

MLE with learnable data augmentation $f_{\phi}(x, y)$:

- E-step to get closed-form q_{ϕ}
- M-step to update p_{θ}
- Peused reward-learning step to update ϕ

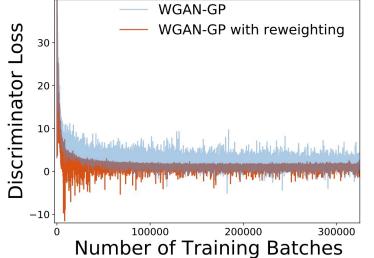
Same form as standard equation

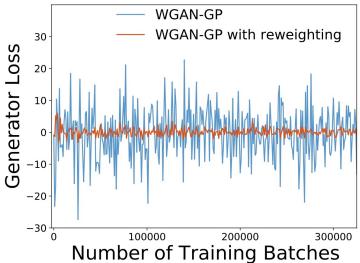
Petuum

Note: updates of θ depend on experience f_{ϕ} , thus the resulting θ^t is a function of ϕ

- GANs ⇔ RL ⇔ VI
- Empower RL/VI algo. (e.g., PPO) to stabilize GAN training [Wu et al., 2020]

	Algorithm	f	α	β	\mathbb{D}
	Unsupervised MLE	$f(oldsymbol{x}; \mathcal{D})$	1	1	CE
	Supervised MLE	$f(oldsymbol{x},oldsymbol{y};\mathcal{D})$	1	ϵ	CE
	Active Learn.	$f(oldsymbol{x},oldsymbol{y};\mathcal{D})+u(oldsymbol{x})$	temp., > 0	ϵ	CE
	Reward-augment MLE	$f_{ ext{metric}}(oldsymbol{x},oldsymbol{y};\mathcal{D},r)$	1	ϵ	CE
	PG for Seq. Gen.	$f_{ ext{metric}}(oldsymbol{x},oldsymbol{y};\mathcal{D},r)$	1	1	CE
	Posterior Reg.	$f_{rule}(m{x},m{y})$	weight, > 0	α	CE
	Unified EM	$f_{rule}(m{x},m{y})$	weight, $\in \mathbb{R}$	1	CE
	Policy Gradient (PG)	$\log Q^{ex}(oldsymbol{x},oldsymbol{y})$	1	1	CE
	+ Intrinsic Reward	$\log Q^{ex}(oldsymbol{x},oldsymbol{y}) + Q^{in}(oldsymbol{x},oldsymbol{y})$	y) 1	1	CE
	RL as inference	$Q^{ex}(oldsymbol{x},oldsymbol{y})$	temp., > 0	α	CE
	Vanilla GAN	binary classifier	0	1	JSD
	$f ext{-} ext{GAN}$	discriminator	0	1	f-divg.
	WGAN	1-Lipschitz discriminator	0	1	W dist.





- GANs ⇔ RL ⇔ VI
- Empower RL/VI algo. (e.g., PPO) to stabilize GAN training [Wu et al., 2020]

(a) Re-use PPO objective for GAN training: discourage excessively large updates by "trapping" the update size around 1

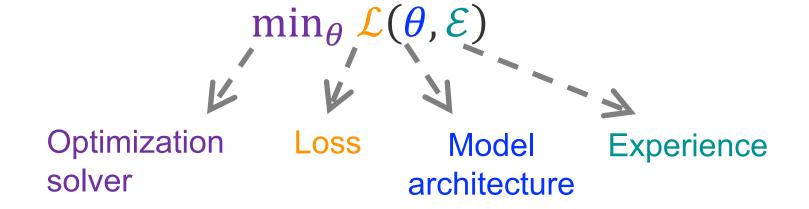
(b) Re-use importance weighting in a VI perspective: greatly reduced variance in both generator and discriminator losses

Improved performance on a range of problems, including image generation, text generation, and text style transfer

Summary so far ...

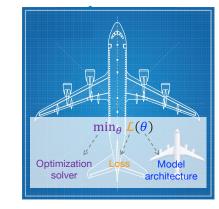
The standard equation of objective

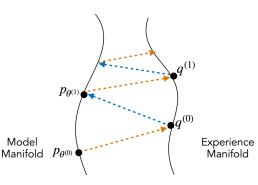
$$\min_{q,\theta} - \mathbb{E}_{q(x,y)} \left[f(x,y) \right] + \beta \mathbb{D} \left(q(x,y), p_{\theta}(x,y) \right) - \alpha \mathbb{H}(q)$$


- Experience function f can encode different types of experience
 - o Data instances, constraints, informativeness, reward, adversary models, ...
- Enable panoramic learning with ALL experience
 - Re-use or repurpose originally specialized algorithms to other contexts
 - Experience compositonality

Toward A "Standard Model" of ML

- Loss
- Experience
- Optimization solver
- Model architecture




The zoo of optimization solvers

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(x), p_{\theta}(x)\right) - \mathbb{E}_{q(x)}\left[f(x)\right]$$

Optimization of the loss, subject to $q \in \mathcal{P}_{\text{prob}}$. Convex to q when $\alpha, \beta > 0$ and \mathbb{D} is convex

- Like the Standard Equation as a *master objective* for many paradigms, is there a *master solver* for optimization of loss?
- No (yet) such a general algorithm
- Alternating Projection:
 - Most widely used
 - EM, Variational EM (Variational inference), Wake-Sleep, ...

The Teacher-Student Mechanism

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(x), p_{\theta}(x)\right) - \mathbb{E}_{q(x)}\left[f(x; .)\right]$$

when $\alpha, \beta > 0$ and $\mathbb{D} = CE$

(1) Teacher step:

$$q(x) = \exp\left\{ \begin{array}{c} \frac{\beta \log p_{\theta}(x) + f(x; .)}{\alpha} \end{array} \right\} / Z$$
• Generalized E-step

(2) Student step:

$$\min_{\theta} \mathbb{E}_{q(x)} \left[\log p_{\theta}(x) \right]$$

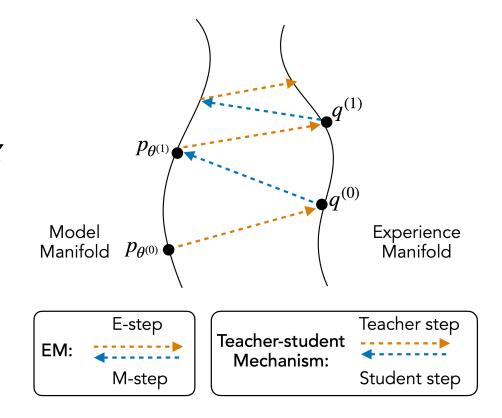
Generalization of the classic Variational EM

Generalized *E-step* Support all types of experience

M-step

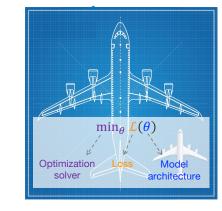
The Teacher-Student Mechanism

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(x), p_{\theta}(x)\right) - \mathbb{E}_{q(x)}\left[f(x; .)\right]$$


when $\alpha, \beta > 0$ and $\mathbb{D} = CE$

(1) Teacher step:

$$q(x) = \exp \left\{ \frac{\beta \log p_{\theta}(x) + f(x; .)}{\alpha} \right\} / Z$$


(2) Student step:

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{q(\boldsymbol{x})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}) \right]$$

Some "advanced" (specialized) techniques

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(x), p_{\theta}(x)\right) - \mathbb{E}_{q(x)}\left[f(x)\right]$$

- Alternating Projection:
 - EM, Variational EM (Variational inference), Wake-Sleep, ...
 - SGD, Back-propagation (BP)
- Convex duality, Lagrangian -- Kernel Tricks
- Integer linear programming (ILP)
- Probability functional descent (PFD) [Chu et al., 2019] -- Influence function, gives a neat formulation of GAN-like optimization and a few others

I: Duality

Structured MaxEnt Discrimination (SMED) [Zhu and Xing, 2013]:

$$\min_{q, \xi \ge 0} - \alpha H(q) - \beta \mathbb{E}_{q} \left[\log p(\theta) \right] + U(\xi)$$

$$s.t. - \mathbb{E}_{q} \left[\Delta F_{i}(y; \theta) - \Delta \ell_{i}(y) \right] \le \xi_{i} \quad \forall i$$

Solve the (primal) Lagrangian:

$$q(\boldsymbol{\theta}) = \exp \left\{ \frac{\beta \log p(\boldsymbol{\theta}) + \sum_{i, y \neq y_i^*} \lambda_i(y) (\Delta F_i(y; \boldsymbol{\theta}) - \Delta \ell_i(y))}{\alpha} \right\} / Z(\boldsymbol{\lambda})$$

• Solve Lagrangian multipliers λ from the dual problem (when $p(\theta) = \mathcal{N}(\theta|0, I)$; $U(\xi) = \sum \xi_i$,)

$$\max_{\boldsymbol{\lambda} \geq 0, \; \sum \lambda_i = 1} \sum_{i, \boldsymbol{y} \neq \boldsymbol{y}_i^*} \lambda_i(\boldsymbol{y}) \Delta \ell_i(\boldsymbol{y}) - \frac{1}{2} \left| \sum_{i, \boldsymbol{y} \neq \boldsymbol{y}_i^*} \lambda_i(\boldsymbol{y}) \Delta T_i(\boldsymbol{y}) \right|^2$$
 Allows kernel trick for nonlinear interactions b/w experiences

II: Influence Function and Probability Functional Descent

• Gradient descent in the space of probability measures $\mathcal{P}(X)$

$$\min_{p \in \mathcal{P}(X)} \mathcal{I}(p)$$
 $\mathcal{I}: \mathcal{P}(X) \to \mathbb{R}: \text{a probability functional}$

• Influence function $\Psi_p(x)$:

Gateaux differential of \mathcal{I} at p in the direction $\chi = q - p$

$$d\mathcal{I}_p(\chi) = \int_X \Psi_p(x) \chi(dx)$$
$$= \mathbb{E}_q \big[\Psi_p(x) \big] - \mathbb{E}_p \big[\Psi_p(x) \big]$$

• With a linear approximation $\tilde{\mathcal{I}}(p)$ to $\mathcal{I}(p)$ around p_0 :

$$\begin{split} \tilde{\mathcal{I}}(p) &= \mathcal{I}(p_0) + d\mathcal{I}_{p_t}(p - p_0). \\ &= \mathbb{E}_{x \sim p} \big[\Psi_{p_0}(x) \big] + const. \end{split}$$

• Thus, once we obtain the influence function, we can optimize p by decreasing $\mathbb{E}_{x\sim p}\big[\,\Psi_{p_0}(x)\,\big]$

Adversarial learning using PFD

$$\mathcal{I}(p_{\theta}) = \mathbb{D}\left(p_d(\mathbf{x}), p_{\theta}(\mathbf{x})\right)$$

- Often no closed-form influence function, e.g., when D is JSD or Wdistance
- Approximate with convex duality:
 - Convex conjugate $\mathcal{I}^*(\psi) = \sup_{u} \int_{x} \psi(x)u(dx) \mathcal{I}(u)$
 - Influence function is obtained via $\Psi_{p_{\theta}}(x) = \operatorname{argmax}_{\psi} \mathbb{E}_{x \sim p_{\theta}}[\psi(x)] \mathcal{I}^*(\psi)$
 - Parameterize ψ as below to recover optimization of generator and discriminator $\psi_{\phi}(x) \coloneqq 0.5 \log \left(1 C_{\phi}\right) 0.5 \log 2$

$$\Psi_{JS} = \operatorname{argmax}_{\phi} \mathbb{E}_{p_{data}} [\log C_{\phi}] - \mathbb{E}_{p_{\theta}} [\log (1 - C_{\phi})]$$

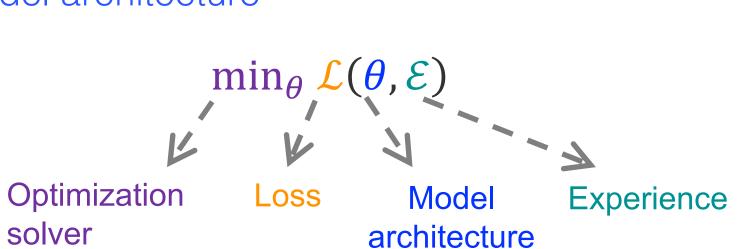
• The whole optimization of $\mathcal{I}(p)$ is thus

$$\min_{\theta} \max_{\phi} \mathbb{E}_{p_{data}} [\log C_{\phi}] - \mathbb{E}_{p_{\theta}} [\log (1 - C_{\phi})]$$

Other popular algorithms in the PFD view

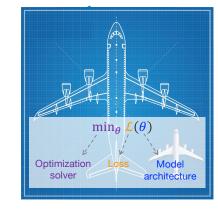
PFD recovers optimization procedures in some popular algorithms

Algorithm	Type of derivative estimator		
Generative adversarial networks			
Minimax GAN (Goodfellow et al., 2014)	Convex duality		
Non-saturating GAN (Goodfellow et al., 2014)	Binary classification		
Wasserstein GAN (Arjovsky et al., 2017)	Convex duality		
Variational inference			
Black-box variational inference (Ranganath et al., 2014)	Exact		
Adversarial variational Bayes (Mescheder et al., 2017)	Binary classification		
Adversarial posterior distillation (Wang et al., 2018)	Convex duality		
Reinforcement learning			
Policy iteration (Howard, 1960)	Exact		
Policy gradient (Williams, 1992)	Monte Carlo		
Actor-critic (Konda & Tsitsiklis, 2000; Sutton et al., 2000)	Least squares		
Dual actor-critic (Chen & Wang, 2016; Dai et al., 2017b)	Convex duality		


Estimation of the influence function

Toward A "Standard Model" of ML

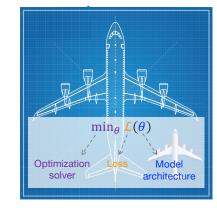
- Loss
- Experience
- Optimization solver
- Model architecture



Model architecture – more in Lecture#2

- Neural network design
- Graphical model design
- Compositional architectures

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(x), p_{\theta}(x)\right) - \mathbb{E}_{q(x)}\left[f(x)\right]$$



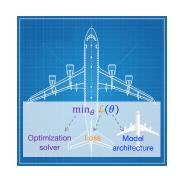
Summary: A "Standard Model" of ML

- Loss + experience
 - Standard Equation (SE)

$$\min_{q,\theta} - \mathbb{E}_{q(x,y)} \left[f(x,y) \right] + \beta \mathbb{D} \left(q(x,y), p_{\theta}(x,y) \right) - \alpha \mathbb{H}(q)$$

- Optimization solver
 - The extended EM algorithm gives a general primal solution in many cases
 - PFD gives a neat formulation for some cases (e.g., GANs)
- Model architecture: vast libraries of building blocks → compositionality

Next: practical implications of the ML "Standard Model"



Schedule

• Lecture#1: Theory: The Standard Model of ML A blueprint of ML paradigms for ALL experience (Jan 19 Thursday, 4:45pm-6:15pm UK Time)

 Lecture#2: Tooling: Operationalizing The Standard Model Compose your ML solutions like playing Lego (Jan 20 Thursday, 1:00pm-2:30pm)

 Lecture#3: Computing: Modern infrastructure for productive ML Automatic tuning, distributing, and scheduling (Jan 20 Thursday, 4:45pm-6:15pm)

