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Real-world Machine Learning Problems
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Data and experience of all kinds
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An Example: ML for Healthcare
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A ready-to-use real Al solution is extremely complex,
given all these experiences to train on

Use Case: Automatic Medical (or other) Report Generation

Findings:
There are no focal areas of consolidation. « Abnormal regions in medical images are
No suspicious pulmonary opacities. difficult to identify.

Heart size within normal limits.
No pleural effusions.
There is no evidence of pneumothorax.

Degenerative changes of the thoracic spine. « How to distribute topics across sentences

Impression:
No acute cardiopulmonary abnormality.

* How to localize the image regions and
tags that are relevant to a sentence?

* How to make report readable to humans?

Raw Data Enrichment Model/Algorithm
Visual . .
Features Tags Hierarchical LSTM
— normal
O == |5 | s L Sentence Topic Word
% — g i LSTM Generator | LSTM
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Inter-operability between diverse systems?

Data/ML Process Builder

ML Systems

TensorFlow

+ dy/net :

quests
Distributed Communications BackendT| T
|

?

L

Hardware Resource Management

|
!

Containers and Storage Volumes



An Al solution

Data wrangling

Feature engineering
Model compiling
Algorithm designing
Distributed training
Debugging

Resource provisioning
Hardware management
Fault recovery

..etc
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Build versus Craft
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Modules, Building-blocks
* Nuts and Bolts

* Interoperability

* Process

Soundness
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Schedule

o Lecture#1: Theory: The Standard Model of ML
A blueprint of ML paradigms for ALL experience
(Jan 19 Thursday, 4.450m-6.150m UK Time)

o Lecture#2: Tooling: Operationalizing The Standard Model

Compose your ML solutions like playing Lego
(Jan 20 Thursday, 1:00pm-2:30pm)

o Lecture#3: Computing: Modern infrastructure for productive ML

Automatic tuning, distributing, and scheduling
(Jan 20 Thursday, 4:.45pm-6.150m)

. M

Petuum’
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Theory:

The Standard Model - A Blueprint for ML
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Experience of all kinds
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Experience of all kinds

Auxiliary agents

itions thereof

Master classes
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Experience of all kinds
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Human learning vs machine learning
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The zoo of ML/Al models

o Neural networks e Kernel machines
o Convolutional networks o Radial Basis Function Networks
o AlexNet, GoogleNet, ResNet o (Gaussian processes
o Recurrent networks, LSTM o Deep kernel learning
o Transformers o Maximum margin
o BERT, GPTs o SVMs
o Graphical models e Decision trees
o Bayesian networks e PCA, Probabilistic PCA, Kernel
o Markov Random fields PCA, ICA
o Topic models, LDA o Boosting
o HMM, CRF

Petuum’ 19 %
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The zoo of ML/AI algorithms

_

ﬁﬁerent Model Types _
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Graphical Models
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]
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Deep Neural Network
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The zoo of ML/AI algorithms

maximum likelihood estimation reinforcement learning as inference

data re-weighting inverse RL  policy optimization active learning

data augmentation actor-critic reward-augmented maximum likelihood

label smoothing imitation learning softmax policy gradient

adversarial domain adaptation posterior regularization
GANs

knowledge distillation intrinsic reward

constraint-driven learning

prediction minimization generalized expectation

regularized Bayes |
learning from measurements

energy-based GANs
weak/distant supervision

Petuum” 21 Lg
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Really hard to navigate, and to realize

Depending on individual's
expertise and creativity

Bespoke, delicate pieces of
art

Like an airport with different
runways for every different
types of aircrafts

s T
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Physics in the 1800’s

e Electricity & magnetism:
o Coulomb’s law, Ampere, Faraday, ...

e Theory of light beams:

o Particle theory: Isaac Newton, Laplace, Plank OO
o Wave theory: Grimaldi, Chris Huygens, Thomas Young, Maxwell +)

o Law of gravity NAAAAYS
o Aristotle, Galileo, Newton, ... VVVVW.

Petuum’ 23 g
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Standard Model in Physics

Maxwell's Eqns: Simplified w/  Further Standard Model  Unification of

original form rotational simplified w/ w/ Yang-Mills fundamental
symmetry symmetry of theory and US(3) forces?
B B0 ) oo special relativity =~ symmetry
T @ V-D=p,
Diverse 3 kA 1
o, g% & _d¥ R = € Oy Fi) =0 S — 2
electro_ —u(rjz ﬁz] ::3 :; s V-B 0 v ‘Cgf 9 TT(F )
i eAGIS) T T @ e -
magneiic . (ﬂé_ g]_ﬁ_ﬂ — —Fn”UF;},,
theories e 4
a;z—a-%ﬂm' q'=q+j—§ (4) Ampére-Maxwell Law
A8 _4%_y —_
Pu-¢p Qm-& Rum-& Ohm’s Law
Peif Q=ks R=b) oo
de+2+d_q+d 0 Continuity of charge
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Quest for more standardized, unified ML principles

*Padry Domingas derptibes sachee luarng 2od showy
Bew wondrows 2ad erciting e Ity wil be”
[ ] ~¥aitw bcsw

Machine Learning 3: 253-259, 1989
© 1989 Kiluwer Academic Publishers — Manufactured in The Netherlands S ‘E’HE M &STER
¢ L ]

5% ALGORITHM

HOW THE QUEST FOR
. THE ULTIMATE
s LEARNING MAGHINE WILL
REMAKE OUR WORLD

Toward a Unified Science of Machine Learning T PEDRD DOMINGOS

EDITORIAL :

[P. Langley, 1989]

REVIEW Communicated by Steven Nowlan

A Unifying Review of Linear Gaussian Models

Sam Roweis*
Computation and Neural Systems, California Institute of Technology, Pasadena, CA
91125, U.S.A.

Zoubin Ghahramani*
Department of Computer Science, University of Toronto, Toronto, Canada

Petuum” i 2"5"£g
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Toward A “Standard Model” of ML

e | OSS
e EXxperience

e Optimization solver

e Model architecture
ming L(0, E)
/ /I N S -
L v X s

Optimization Loss Model Experience
solver architecture

Petuum’ 26 Lg
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Toward A “Standard Model” of ML

e LOSS
e EXxperience

e Optimization solver

e Model architecture

migt —E+D—H
LAY \

L v N

Experience Divergence Uncertainty
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Toward A “Standard Model” of ML

Toward a ‘Standard Model’ of Machine Learning

Zhiting Hu", Eric P. Xinghot™
T Halicioglu Data Science Institute, University of California San Diego, San Diego, USA
! Machine Learning Department, Carnegie Mellon University, Pittsburgh, USA
5 Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE
¢ Petuum Inc., Pittsburgh, USA

[Hu & Xing, Harvard Data Science Review, 2022]: https.//arxiv.orq/abs/2108.07783

migt —E+D—H
LAY \

L v N

Experience Divergence Uncertainty

Petuum” 28 Lg


https://arxiv.org/abs/2108.07783

UC San Diego 6'25:2:} o
Maximum likelihood estimation (MLE) at a close look:

e The most classical learning algorithm

e Supervised:

o Observe data D = {(x*,y*)}

> Solve with SGD min = By~ p [ log po (¥ |x )]

e Unsupervised:

o Observe D = {(x*)}, y is latent variable
o Posterior pg(y|x) mgn —Ex~p [ logJ Pe(x*»J’)]
o Solve with EM: y

= E-step imputes latent variable y through expectation on complete likelihood
= M-step: supervised MLE

Petuum’ 29 g
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MLE as Entropy Maximization

o Duality between supervised MLE and maximum entropy, when p is
exponential family

Shannon entropy H

A
min H(p) -

p(x,) features T (x,y)

A

s.t. Ep[T(x, )] = Exr yy~olT (x,y)] —
data as constraints

Solve w/ Lagrangian method \J,

_= Lagrangian multiplier 6
p(x,y) =exp{0-T(x)} / Z(0)"

min —E - y)-pl0 - T(x, )] +10g Z(8) > Negative log-likelihood

. How to estimate 8 — Close form? SGD?
Petuum’ 30
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MLE as Entropy Maximization

e Unsupervised MLE can be achieved by maximizing the negative free
energy:

o Introduce an auxiliary variational distribution g(y|x) (and then play with its entropy
and cross entropy, etc.)

log j Po (X7, y) = Eq(yx) [log —| +KL(q(y|x*) || pg(¥|x*))
y q(y|x*)

> H(q(y|x*)) + Eqeyixrllog pe(x™, y)]

Petuum’ 32 g
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Alternating projection

Algorithms for Unsupervised MLE

6

Model

min — E,+_ p llogj Pe(x*»J’)]
y

1) Solve with EM

p;((yxl;r%) + KL(q(y]x*) || pe (¥|x*))

> H(q(y|x")) + Eqeyixlog pe(x™, y)]

logj pe(x*,y) = Eqyx [log
y

a E-step: Maximize L(q,0) w.r.t q, equivalent to minimizing KL by setting

q(y|x*) = pgowa(y|x”)
o M-step: Maximize L(q,0) w.rt : max Eq(yixy[log pg (x*, y)]

Petuum’ 33 g
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Algorithms for Unsupervised MLE (cont’d)

log f Po (X7, Y) = Eq(yix [log —=| + KL(q(y|x*) || pa(¥]x*))
y q(y|x*)

> H(q(y|x)) + Eq(yixlog pe(x™, )]

2) When model pg is complex, directly working with the true posterior pg(y|x™)
S intractable = Variational EM

= (Consider a sufficiently restricted family Q of g(y|x) so that minimizing the KL is
tractable

o E.g., parametric distributions, factorized distributions

= E-step: Maximize L(q,0) w.r.t g € Q, equivalent to minimizing KL
=  M-step: Maximize L(q,0) w.r.t 0 max Eg(yxylog pe (x*, y)]

Petuum’ 34
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Algorithms for Unsupervised MLE (cont’d)

log f Po (X7, Y) = Eq(yix [log —=| + KL(q(y|x*) || pa(¥]x*))
y q(y|x*)

> H(q(y|x)) + Eq(yixlog pe(x™, )]

3) When g is complex, e.g., deep NNs, optimizing g in E-step is difficult (e.g.,
high variance) = Wake-Sleep algorithm [Hinton et al., 1995]

« Sleep-phase (E-step): rrclpin KL(po (|x)|lqp(¥|x*)) ----- > Reverse KL

« Wake-phase (M-step): Maximize L(q,0) w.r.t 9 : max Eg(yxyllog pe(x*, ¥)]

Other tricks: reparameterization in VAE (‘2014), control variates in NVIL (‘2014)

Petuum’ 35
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Quick summary of MLE

e Supervised:

o Duality with MaxEnt
o Solve with SGD

e Unsupervised:

o Lower bounded by negative free energy
o Solve with EM, VEM, Wake-Sleep, ...

e Close connections to MaxEnt
o With MaxEnt, algorithms (e.g., EM) arises naturally

Petuum’ 36 g
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Posterior Regularization (PR)

e Make use of constraints in Bayesian learning
o An auxiliary posterior distribution q(6)
o Slack variable &, constant weighta = > 0

rcrllign —aH(q) — PE, :108 Pe(x;J’)] +$

s.t. —Eg[ fo(x,y)] <¢ [Ganchev et al., 2010]

o E.g., max-margin constraint for linear regression [Jaakkola et al., 1999] and
general models (e.g., LDA, NNs) [Zhu et al., 2014]

e Solution for g
CI(H) =exp{ ﬁlogpe(x:JO’[)+f9(x»J’)} /Z

Petuum’ 37 g
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More general learning leveraging PR

e No need to limit to Bayesian learning

e E.g., Complex rule constraints on general models [Hu et al., 2016],
where

o g can be over arbitrary variables, e.qg., q(x,y)
o pg(x,y) is NNs of arbitrary architectures with parameters 0

E.Q., ,y) IS a 1st-order logical rule:
min — aH(q) — BE, [ log pg (x, y)] Ty g, r(x.y) J
4 ‘9’5 If sentence x contains word "“but”

s.t. Eq(xy) [1 —7r(x,y) ] <¢ = itg sentiment y S Ehe same as the
sentiment after “but

Petuum’ 38 %
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EM for the general PR

e Rewrite without slack variable:

min — aH (q9) — BE, llog po(x, y)] — Eqy) [f (x,y) ]

o Solve with EM

Blogpe(x,y) + f(x,y) } /7

= Estep: qg(x,y) = exp{
a

= M-step: mgn [Eq[logpg(x,y)]

Petuum’ 39 g
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Reformulating unsupervised MLE with PR

log j pe(x*,y) = H(q(y|x)) + Eq(yxm[log pe (2%, ¥)]
y

e Introduce arbitrary g(y|x)

min — aH(q) - fEq llog pe(x, y)] +$
q,0,¢ Data as constraint.

| Given x ~ D, this constraint doesn'’t
s. L. _IECI [f(x ; D) _ <g influence the solution of g and @

o f(x;D) :=1log E,«_p| L+(x) ]
A constraint saying x must equal to one of the true data points

Or alternatively, the (log) expected similarity of x to dataset D,
with 1(-) as the similarity measure (we’ll come back to this later)

@) a — ,8 = 1
Petuum’ 40 g
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A “Standard Model” of Machine Learning
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The Standard Equation (SE)

min D (a(x,¥), pe (x,¥)) — aM() + §
S.t. —Eq(xy) [f(x;Y)] <
Equivalently:
min — [E (x,y) fx,y) |+ LD q(x,y), e (x,y)) — aH(q)
q,0 q\x,y
3 terms: Experience Divergence Uncertainty

(exogenous regularizations) (fitness) (self-regularization)
e.g., data examples, rules e.g., Cross Entropy e.g., Shannon entropy

@ Uncertainty

@
&
o
Textbook Dj Teacher Q’I1 '~ﬁ Student
Do tuum’ flx,yl.) q(x,y) I pe(x,y) . g
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The Standard Equation (SE)

min —
q

____________________________________________________________________

( Different Model Types .

J

Standard Equation (SE)

_

World Model )

1
) : Experiences

‘O ' Divergence xogenous regularization)

* % : . 'If

Graphical Models Deep Neural Network : (Fitness) [f]."' ;
: D(q, py) :
_— - = N M & D ORI (e '
.,\ <': W " ——F - P13 : Cross entropy E
o Yol o . KL divergence U certalnty '
e @ . 1
el ? Iy utput — ! f-d .
.0 .o o - ' W |ve'rgedr.1ce (Self-regul anzatton)AlH](CI) .
e Prompts : asserstein distances q space ]
Symbolic Knowledge # Model space :
| '
. 4

____________________________________________________________________

Bty | F.9) | + 8D (0030, po (x.3)) - abi(@)

MOHAMED BIN ZAYED
UNIVERSITY OF
ARTIFICIAL INTELLIGENCE

#

! r:mmmmrali; ANALYSIS
INFIJRMATllllg IRESEARC

[Note: in SE, experience function f can also depends on 6. See the paper for mor details]

Petuum’



Overview: well-known algorithms/paradigms recovered by SE

Experience type Experience function f Divergence D « B Algorithm
faata(x; D) CE 1 1 Unsupervised MLE
faata(z,y; D) CE 1 € Supervised MLE

. faata-selt(x, y: D) CE 1 € Self-supervised MLE

Data instances
faata-w(t; D) CE 1 € Data Re-weighting
fdata-aug (t; D) CE 1 € Data Augmentation
factive(x, y; D) CE 1 € Active Learning (Ertekin et al., 2007)
frute(,y) CE 1 1 Posterior Regularization (Ganchev et al., 2010)

Knowledge
frute(x,y) CE R 1 Unified EM (Samdani et al., 2012)
log Q% (x, y) CE 1 1 Policy Gradient

Reward log Q%(z,y) + Q™ (x,y) CE 1 1 + Intrinsic Reward
Q% (x,y) CE p>0 p>0 RL as Inference

Model fgérggfking (z,y; D) CE 1 € Knowledge Distillation (G. Hinton et al., 2015)
binary classifier JSD 0 1 Vanilla GAN (Goodfellow et al., 2014)

o discriminator f-divergence 0 1 f-GAN (Nowozin et al., 2016)

Variational
1-Lipschitz discriminator Wy distance 0 1 WGAN (Arjovsky et al., 2017)
1-Lipschitz discriminator KL 0 1 PPO-GAN (Y. Wu et al., 2020)

Online f-(t) CE p>0 p>0 Multiplicative Weights (Freund & Schapire, 1997)

44
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SE Component: Experience Function f

Different choices of experience function f lead to different algorithms:

mip — Eqgey | /(9 | + 6D (aC0), po (6,9)) - ati(a)

q, .
. ; \\\A
Experience arimat Set Divergence to Cross Entropy  Set Uncertainty to
(exogenous regularizations) D(q, pe) = —Eq|[ log pg | Shannon Entropy
e.g., data examples, rules H(q) = H(q): = —E,[logq ]

Petuum’ g
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SE with Data Experience -- Supervised MLE

Observe data D = {(x*, y*)}

mip — aH(q) - FEy | 10gpe(x.y) | ~Eq| /() ]

f=fxy; D) =log Eu yy-p| Ly (%, ¥) | a=1,F=¢

‘

Teacher step: (X, ) = eXp{ B logpg(x,¥) + f(x,y; D) } /Z ~ exp{f (x,y; D)} Z = Pa(x,¥)
a

Student step: min — o=
udent step mlrel IECI llog Po(x,y) ] =3 Negative data log-likelihood

Petuum’ 46 g
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SE with Data Experience -- Unsupervised MLE

Observe data D = {(x*)}

mip — aH(q) - FEy | 10gpe(x.y) | ~Eq| /() ]
f=f(x; D) =logEy.p[ly(x) ] a=p=1

!

iy 1) - By [logpas ) .

~
3 Negative variational lower bound

Petuum’ 47 %

q=qy|x)



UCSan Diego $Fotng, wonmueo e

SE with “Oracle Data Experience”: Active Learning

e Have access to a vast pool of unlabeled data instances
o Can select instances (queries) to be labeled by an oracle (e.g., human)

o EXxperiences:

o u(x) measures /nformativeness of an instance x
= e.g., Uncertainty on x, measured by Shannon entropy H( pg(y|x) )

o Encode instances + oracle labels:

f(x,y; Oracle) =logE x*~D, y*~Oracle(x*)[ ﬂ(x*,y*) (x,y) ]

Petuum’ 48 g
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SE and Active Learning

mip — aH(q) - FEy | 10gPs(x,9)| - Equey | F23) |

f = f(x,y; Oracle) + u(x) a=1,0=c¢

|

Blogpe(x,y) + f(x,y;Oracle) + u(x) } /Z
a

o Teacher step: q(x,y) = exp{

Equivalent to [e.qg., Ertekin et al., 07]:
« Randomly draw a subset Dg,,, = {x*}
- Student step: mjn —Ey | 1og pp(x,y) | |+ Draw a query x* fiom Dy aCording o exp(u (o)}
o + Get label y* for x* from the oracle
« Maximize log likelihood on (x*, y*)

Petuum’ 49 g
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SE with Reward Experience

AGENT  ~otate x¢ ENVIRONMENT
- Take action y; ~ pg(y¢|xt)

/\
'\/

- Getreward 1y = r(x¢, ¥¢)
- New state x;41

Markov Decision
Process (MDP)

Petuum” 50 Lg
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SE with Reward Experience: Reinforcement Learning

- State x;
- Take action y; ~ pg(¥¢|x¢)

T
\/

- Getreward 1y = r(x¢, ¥¢)
- New state x;41

AGENT ENVIRONMENT

Markov Decision
Process (MDP)

e Po(x,y) =pe(¥x)po(x), where pg(y|x) is the policy, py(x) is the start state
distribution

e 0%(x,y) — expected future reward of taking action y in state x and continuing
the current policy pg

Qe(x}’)_IEpelz 7"t|xo—xyo—3’]

o 1%(x) — state distribution

Petuum' .ue (x) - Zt:Op(xt = x) 51 Lg
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SE with Reward Experience I: Policy Gradient

rg)ig — aH(q) —ﬁIqulogpe(x,y)] — IEq[ f(x,y) ]

e Policy gradient

SCORE: 107

f9xy):=logQ%x,y) a=f=1

o Teacher step: q™(x,¥) = pom (x,3)Q° " (x,¥) / Z
o Student step:

Eqm (2,y) [Vologpo(x, y)] + Eqem) (2,4) [V‘)fiward’l(w’ y)] )0:0(70

— 0
=1/Z-) po(x)Vs ) po(ylz)Q’ (2, y) ‘e:ew (log-derivative trick)
x y

(policy gradient theorem)
52

0:0(77')

= 1/Z{3" 1 (@) 3 Q@ y)Vepo(yle) |

Petuum’ x
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SE with Reward Experience Il: RL as Inference

min —aH(q)—ﬁIqulogpe(x,y)]—IEq[ fxy) ]

e RL-as-inference [Dayan'97; Levine'18, .. ]

SCORE: 107

9% y) =Q%xy) a=p=p(>0)

@) @ 0>
e oo
min — pH(q) - pEq | log pa(x, y)] Eqey | Q°(x y)] l I

— log IE'P@(JCJ’) plo=1[xy)] Negaﬂve variational lower bound

Define random variable 0 € {0,1}, p(o = 1) « exp{ Qgt(x, y)/p} (reward excitement fuc. ) g

Petuum’ 53



SE with Other Experience

Experience type Experience function f Divergence D « B Algorithm
faata(x; D) CE 1 1 Unsupervised MLE
faata(z,y; D) CE 1 € Supervised MLE

. faata-selt(x, y: D) CE 1 € Self-supervised MLE

Data instances
faata-w(t; D) CE 1 € Data Re-weighting
fdata-aug (t; D) CE 1 € Data Augmentation
factive(x, y; D) CE 1 € Active Learning (Ertekin et al., 2007)
frute(,y) CE 1 1 Posterior Regularization (Ganchev et al., 2010)

Knowledge
frute(x,y) CE R 1 Unified EM (Samdani et al., 2012)
log Q% (x, y) CE 1 1 Policy Gradient

Reward log Q%(z,y) + Q™ (x,y) CE 1 1 + Intrinsic Reward
Q% (x,y) CE p>0 p>0 RL as Inference

Model fnnllérél;fking (z,y; D) CE 1 € Knowledge Distillation (G. Hinton et al., 2015)
binary classifier JSD 0 1 Vanilla GAN (Goodfellow et al., 2014)

o discriminator f-divergence 0 1 f-GAN (Nowozin et al., 2016)

Variational
1-Lipschitz discriminator Wy distance 0 1 WGAN (Arjovsky et al., 2017)
1-Lipschitz discriminator KL 0 1 PPO-GAN (Y. Wu et al., 2020)

Online f-(t) CE p>0 p>0 Multiplicative Weights (Freund & Schapire, 1997)

See paper for more details
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SE Component: Divergence Function D

We now look at the choices of divergence D:

mif — Eqeay | £C6,9) |+ 6D (aC2 ), po (x,3) - abi(@)

Divergence
(fitness)

e.g., Cross Entropy

Petuum’ g
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SE with Cross Entropy or KL Divergence

mif — Eqeay | £C6,9) |+ 6D (4G ), po (x,3) - abi(@)

min — Eq(xy) [f (x,y)] + fEq [ log pe (x, y)] — aH(q)

All the algorithms we've just seen

Petuum’ 56
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SE with Other Divergences

e For notation simplicity, we use x to replace (x,y)

mipg — aH(q) + fD ( q(x), pg (x) ) — Eq) [ f(x) ]

Petuum’ 57 g
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SE with Other Divergences

e For notation simplicity, we use x to replace (x,y)

min — aH(g) + FD (9@, po () ) ~ Eqeo | 00 |

e Same as supervised MLE: f:==f(x; D), a=1, B =€
e Equivalent to min D (pd(x), Do (x))

Petuum’ 58 g
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SE with Other Divergences

e For notation simplicity, we use x to replace (x,y)

min — aH(g) + FD (9@, po () ) ~ Eqeo | 00 |

e Same as supervised MLE: f=f(x; D), a=1, [ =€
e Equivalent to min D (pd(x), Do (x))

o Solve with probability functional descent (PFD) [Chu et al., 2019]

o pg(x) can be optimized by minimizing E,, [¥(x)], where ¥(x) is the influence
function for D at pye
o Wis obtained with convex duality Convex conjugate of D

W(x) = argmaxy E, [W(x)] — D*()

o S0 the whole optimization is
' ming maxy, Ep [Y(x)] — D*(y) g
Petuum 59 ,
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SE with JS Divergence: Generative Adversarial Learning
(GANSs)

min D (pa(x), po (¥) )

o Solve with probability functional descent (PFD) [Chu et al., 2019]
o pg(x) can be optimized by minimizing E, [¥(x)], where ¥(x) is the influence
function for D at pye

o Wis obtained with convex duality Parameterize i with an NN C.

E.g., when D is JSD and
P(x) = argmaxll) Po [()] — D @) Ye(x) = 0.5log (1- C¢) — 0.5 log2
o S0 the whole optimization is o) ng into th .
. .. M Plugging into the equation
ming maxy, Ep, [ (x)] — D*(¥)) recovers vanilla GAN training

Jensen-Shannon Divergence: JS(q||pg) = %KL(th) + %KL(ngh)

here h == (q +
Petuum’ where Z(C[ Pe) 60 g
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SE with Wasserstein Distance: W-GAN

min D (pa(x), po (¥) )

o Based on the Kantorovich duality, the 1st-order Wasserstein distance
between two distributions g and p is written as

W1(q,p) = supjy|,<1 Eql ()] — E, (@ (x))

o where ||y]|l, < 1is the constraint of Y: X — R being a 1-Lipschitz function
o Setting D to W leads to the Wasserstein GAN algorithm [Arjovsky et al., 2017]

min W1(q, p) = min supyy,<1 Epy [(x)] = Ep, (Y ()

Petuum’ 61 g



Dynamic SE

e SO far, we have seen SE as the ultimate learning objective
o Fully defines the learning problem in an analytical form
min — [E (x,y) fx,y) |+ LD q(x,y), pe(x,y)) — aH(q)
7.0 q(xy
e In a dynamic or online setting, the learning objective itself may be evolving
over time

o Data instances may follow changing distributions or come from evolving tasks (e.g.,
ifelong learning)

o EXxperience in a strategic game context can involve complex interactions with the
target model through co-training or adversarial dynamics

62



Dynamic SE

e SO far, we have seen SE as the ultimate learning objective
o Fully defines the learning problem in an analytical form

mif — Eqeay | £C6,9) |+ 6D (4G ), po (x,3) - abi(@)

e |In a dynamic or online setting, the learning objective itself may be evolving
over time

o An extended view of the SE for learning in dynamic contexts

o SE is a core part of an outer loop
o E.g., consider dynamic experience f, indexed by time t

for r=1,2,...:
Acquire experience f,

Solve SE: mip — Egey | /e, 3)| + 5D (406, ), po (7)) - (@)

63
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Dynamic SE with Adversarial Experience:
Variations of GAN

mipn — aHl(q) + ﬁlD( q(x), pg (x) ) — Eq) [ f(x) ]

e Recall in MLE, f is a fixed function
f=f(x;D)=logEy.p 1y (x) ]

e Intuitively, see f as a similarity metric that measures similarity of sample
x against real data D

e Instead of the manually fixed metric, can we learn a metric f4"

Petuum’ 64 %
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Dynamic SE with Adversarial Experience:
Variations of GAN

e Augment the standard objective to account for ¢:

mjn max min — aH(g) + B0 q(x), pp (@) ) = Baeo | f6®) |+ Epeeo| f6® |

o Seta =0, = 1. Under mild conditions, the objective recovers:

o Vanilla GAN , when D is JS Divergence and f is a
binary classitier

o f-GAN , when D is f-divergence

o W-GAN , when D is Wasserstein distance and fy is a
1-Lipschitz function

o PPO-GAN when D is KL divergence

Petuum’ * Proofs adapted from Farnia & Tse 2018: “A Convex Duality Framework for GANS” &5 g



Quick recap: well-known algorithms/paradigms recovered by SE

Paradigms not (yet)
covered by SE:

o Meta learning

o Lifelong learning

O

Interesting future
work to study the
connections

Experience type Experience function f Divergence D « B Algorithm
faata(x; D) CE 1 1 Unsupervised MLE
faata(z,y; D) CE 1 € Supervised MLE

. faata-selt(x, y: D) CE 1 € Self-supervised MLE

Data instances
faata-w(t; D) CE 1 € Data Re-weighting
fdata-aug (t; D) CE 1 € Data Augmentation
factive(x, y; D) CE 1 € Active Learning (Ertekin et al., 2007)
frute(,y) CE 1 1 Posterior Regularization (Ganchev et al., 2010)

Knowledge
frute(x,y) CE R 1 Unified EM (Samdani et al., 2012)
log Q% (x, y) CE 1 1 Policy Gradient

Reward log Q%(z,y) + Q™ (x,y) CE 1 1 + Intrinsic Reward
Q% (x,y) CE p>0 p>0 RL as Inference

Model fnnllérél;fking (z,y; D) CE 1 € Knowledge Distillation (G. Hinton et al., 2015)
binary classifier JSD 0 1 Vanilla GAN (Goodfellow et al., 2014)

o discriminator f-divergence 0 1 f-GAN (Nowozin et al., 2016)

Variational
1-Lipschitz discriminator Wy distance 0 1 WGAN (Arjovsky et al., 2017)
1-Lipschitz discriminator KL 0 1 PPO-GAN (Y. Wu et al., 2020)

Online f-(t) CE p>0 p>0 Multiplicative Weights (Freund & Schapire, 1997)
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Why this is useful?

e Panoramic Learning: learning with ALL experience
o EXperience composition
o Reuse specialized algorithms -- one runway for different aircrafts

o Complex interaction between experience

o Multi-agent game theoretic learning using all experience

Petuum’ 69 g
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Panoramic Learning: experience composition

e Distinct types of experience are all formulated with f(x,y)
e Combine and plug different f functions into SE to drive learning

SE(f,D, a, B)
f=w fERI@+w fEIB+ws f&I® + wif(xIED +--

Focus on what to use, instead of worrying about how to use

Petuum’ 70 g
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Panoramic Learning: experience composition
Ex.1: Using symbolic knowledge to learn neural networks

— =
(c)(n)- () tee)™ )~ ()

BERT N7 iisin
L e f N
|E,us|" E, | | E, ” Elw,]” E, | | E, | WIKIPEDIA target \ /=
— < —F < The Free Encyclopedia ?t‘
— i Taxt samples  Knowledge bases Medical KG ConceptNet (CN)
Neural model (N J
Y

rgigrl — aH(q) + D (q(x, y), pe (X, y)) — Eqxy) [f (x,y)]

Hu et al., ACL 2016, “Harnessing Deep Neural Networks with Logic Rules”
Hu et al., NeurlPS 2020, “Deep Generative Models with Learnable Knowledge Constraints”
Tan et al., EMNLP 2020, “Summarizing Text on Any Aspects: A Knowledge-Informed Weakly-Supervised Approac%

Petuum’ 71
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Panoramic Learning: experience composition
Ex.2: Using neural networks to “learn” symbolic knowledge

m}in — aH(q) + D (CI(X, y), po (x, J’)) — Eqxy) [f(x ;J’)]

q,0
(N J
Y
* 0:graph structure to be learned Measuring likelihood of sample (x,y) under a
*  pg:a simulation model generating medical task trained medical neural model

samples (x, y) based on the knowledge graph 6

W mene
By

Commonsense graph Medicaalﬁ‘KG

Hao, Tan et al., 2022, “BertNet: Harvesting Knowledge Graphs from Pretrained Language Models” 72 g
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Panoramic Learning: experience composition
Ex.2: Using neural networks to “learn” symbolic knowledge

m}in — aH(q) + D (q(x, y), po (x, J’)) — Eqxy) [f(x ;J’)]

q,0
' /
Head entity Relation Tail entity Head entity Relation Tail entity
. exercise prevent obesity students worth celebrating graduate
apple business Mac newborn can but not good at sit
sleep prevent illness social worker can help foster child
mall place for shopping honey ingredient for honey cake
gym place for sweat cabbage ingredient for cabbage salad
wheat source of flour China separated by the ocean Japan
oil source of fuel Africa separated by the ocean Europe

Figure 4: Examples of knowledge tuples harvested from ROBERTA-LARGE with MULTI-PROMPTS.

Heedulian et al., 2022, “BertNet: Harvesting Knowledge Graphs from Pretrained Language Models”
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Panoramic Learning: experience composition
Ex.2: Using neural networks to “learn” symbolic knowledge

0.9 —— AutoPrompt —— AutoPrompt
' —— COMET 0.8 —— LPAQA
—— Human-written Prompt —— Human-written Prompt
_ —— Top-1 Prompt (ours) —— Top-1 Prompt (ours)
0.8 —— Multiple Prompts (ours) —— Multiple Prompts (ours)
c e 0.7
O ®)
o v
v 0.7 0
0 o
Q- Q0.6
0.6 1
0.5+
0.5
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall

Figure 2: Precision-recall curve on ConceptNet rela-  Figure 3: Precision-recall curve on LAMA relations.
tions.

Heedulian et al., 2022, “BertNet: Harvesting Knowledge Graphs from Pretrained Language Models” g
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Panoramic Learning: experience composition
Ex.3: Learning prompts to control large pretrained models

rgigl — aH(q) + D (q (x, y)Lpe (x, y)) — Eqxy) [f (x,y) ]

Experiences f

SE @ Data instances
Pretrained LM < |
(e.g., GPT3)

0 0 \

Generate a story about cat: once upon a time,

prompt 6 continuation

~ M

Deng, Wang, Hsieh et al., EMNLP 2022, ” RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning”
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Panoramic Learning: experience composition
Ex.4: Learning controllable text generation — more in Lecture#2

e Combine and plug different f functions into SE to drive learning

rcrlllgl — IEq(x,y) [f(x»J’)] + alD (Q(x,y), Po (x,y)) — IBH(q)
’ A\

Wq 'fdata + Wy 'frules + W3 'freward + -

o Enable applications tfor controllable content generation

Controllable text generation Controlling sentiment

f = sentiment classifier Pos | The film is I
+ linguistic rules |
+ language model

Petuum’ [Hu et al., 2017; Yang et al., 2018] 76 g
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Panoramic Learning: reusing algorithms

o Unitying perspective of diverse paradigms (each tailored for a specific
type of experience) under SE

=}

e Combining or integrating different experiences

o Systematic idea transfer and solution exchange

o Solvir?g challenges in one paradigm by applying well-known solutions from
another

o Accelerate innovations across research areas

Petuum’ 77 g
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Panoramic Learning: reusing algorithms — Ex. 1 M

e Rules in PR & Reward in RL
e Empower reward learning algo. to learning rules [Hu et al., 2018]

Algorithm  f o’ g D
Unsupervised MLE  f(x; D) 1 1 CE
Supervised MLE  f(x,y; D) 1 e CE
Active Learn.  f(x,y; D) + u(x) temp.,>0 € CE
Reward-augment MLE  fmewic (@, y; D, 1) 1 e CE
PG for Seq. Gen.  fieuic(€, y; D, ) 1 1 CE
Posterior Reg.  fruie(,y) weight, >0 a CE
Unified EM  fruie(x,y) weightt c R 1 CE
Policy Gradient (PG) log Q°“(z, y) 1 1 CE
+ Intrinsic Reward  log Q°*(z,y) + Q" (x,y)| 1 1 CE
RL as inference Q°“(x,y) temp.,>0 oo CE
Vanilla GAN binary classifier 0 1 JSD
f-GAN discriminator 0 1 f-divg
. WGAN  1-Lipschitz discriminator 0 1 Wdist. g
Petuum 78
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Panoramic Learning: reusing algorithms — Ex. 1 M

e Rulesin PR & Reward in RL
e Empower reward learning algo. to learning rules [Hu et al., 2018]

min — Eq () [ f (x,y)] + pD (q(x, ), po (x, y)) — aH(g)

q,
MaxEnt inverse RL [Ziebart'08]: PR with learnable rule
« Parameterize reward fy(x,y) with ¢ constraints f,(x,y):
« Learn ¢ with the additional optimization step: - E-step to get closed-form g
Reuse fo /Qam « M-step to update pg
md}n — E@x y)~p [ log g4 (x", ) ] parameterized rules 5, I+ Reused reward-learning
o step to update ¢

Note: g is a function of f,
thus g depends on ¢

Petuum’ 79 %
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Panoramic Learning: reusing algorithms — Ex.2 M

e Data in supervised MLE & Reward in RL
e Empower reward learning algo. to learning data augmentation [Hu et al., 2019]

Algorithm  f o’ g D
Unsupervised MLE  f(x; D) 1 1 CE
Supervised MLE  f(x,y; D) 1 e CE
Active Learn.  f(x,y; D) + u(x) temp.,>0 € CE
Reward-augment MLE  fmewic (@, y; D, 1) 1 e CE
PG for Seq. Gen.  fieuic(€, y; D, ) 1 1 CE
Posterior Reg.  fruie(®,y) weight, >0 a CE
Unified EM  fruie(x,y) weightt c R 1 CE
Policy Gradient (PG) log Q°“(z, y) 1 1 CE
+ Intrinsic Reward  log Q°*(z,y) + Q" (x,y) | 1 1 CE
RL as inference Q°“(x,y) temp.,>0 oo CE
Vanilla GAN binary classifier 0 1 JSD
f-GAN discriminator 0 1 f-divg
. WGAN  1-Lipschitz discriminator 0 1 Wdist. g
Petuum 80 o
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Panoramic Learning: reusing algorithms — Ex.2 M

e Data in supervised MLE & Reward in RL
e Empower reward learning algo. to learning data augmentation [Hu et al., 2019]

mip — Eqgey | /(6,9) | + b (aCo), po (6,3) - pH(@)

Intrinsic reward learning [Zheng et al.,08]:
+ Reward f = f¢* + fdi)n MLE with learnable data

augmentation f(x,y):
- E-step to get closed-form g
« M-step to update pg

* |.e., parameterize (intrinsic) reward f(;;" with ¢

« Learn ¢ with the additional optimization step:
Reuse [o learn

m(gn ;/.ZSE (Hf(gb)) parameterized data 5 Reused reward-learning
L// ) augmentation moael step to update ¢
Same form as Notgz updates of 8 depend on
standard equation  experience f, thus the resulting
Petuum’ 6t is a function of ¢ o g
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Panoramic Learning: reusing algorithms — Ex.3 M

¢ GANs © RL & V|

o Empower RL/VI algo. (e.g., PPO) to stabilize GAN training [Wu et al., 2020]

Algorithm  f a B D
Unsupervised MLE  f(x; D) 1 1 CE
Supervised MLE  f(x,y; D) 1 e CE
Active Learn.  f(x,y; D) + u(x) temp.,>0 € CE
Reward-augment MLE  fmewic (@, y; D, 1) 1 e CE
PG for Seq. Gen.  fieuic(€, y; D, ) 1 1 CE
Posterior Reg.  fruie(®,y) weight, >0 a CE
Unified EM  fruie(x,y) weightt c R 1 CE
Policy Gradient (PG) log Q°“(z, y) 1 1 CE
+ Intrinsic Reward  log Q°*(z,y) + Q" (x,y) | 1 1 CE
RL as inference Q°*(x,y) temp., >0 o CE
Vanilla GAN binary classifier 0 1 JSD
f-GAN discriminator 0 1 f-divg
WGAN  1-Lipschitz discriminator 0 1 Wdist.

Petuum’

82
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Panoramic Learning: reusing algorithms — Ex.3 M

e GANs & RL & VI
o Empower RL/VI algo. (e.g., PPO) to stabilize GAN training

-10

Objective

—_— Conventlonal (E[D(x)])
S Ours (Surrogate)

0 1 ;
Linear interpolation size

(a) Re-use PPO objective for GAN

training: discourage excessively large
updates by “trapping” the update size
around 1

Petuum’

Discriminator Loss

w
o

N
o

=
o

o

|
=
o

WGAN-GP
—— WGAN-GP with reweighting

o

100000 _ 290'000 300000
Number of Training Batches

Generator Loss

w
o

N
o

fay
o

o

|
=
o

|
N
(=)

—-30+

\Wu et al., 2020]

bl
| ‘]yJ "IH“\IH !

— WGAN-GP
—— WGAN-GP with reweighting

‘ I‘ J “ l'J '} | Hlﬂnl

L

100000 200000 300000

Number of Training Batches

(b) Re-use importance weighting in a VI
perspective: greatly reduced variance in both
generator and discriminator losses

Improved performance on a range of problems, including

image generation, text generation, and text style transfer




UC San Diego

Summary so far ...

e The standard equation of objective

mif — Eqcay | £G6,9) |+ 6D (4(x ), po (x,9) - abi(@)

e EXperience function f can encode different types of experience

o Data instances, constraints, informativeness, reward, adversary models,

e Enable panoramic learning with ALL experience
o Re-use or repurpose originally specialized algorithms to other contexts
o EXxperience compositonality

Petuum’
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Toward A “Standard Model” of ML

e | OSS
e EXxperience

o Optimization solver

e Model architecture
ming L(0, E)
/ /I N S -
L v X s

Optimization Loss Model Experience
solver architecture

Petuum” 85 Lg
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The zoo of optimization solvers

mip - aH(g) +AD( 4G, pe(®) )~ Eqeo| f00 |

\ Optimization of the loss, subject to q € Ppqp.
Convex to g when «, f > 0 and D is convex

o Like the Standard Equation as a master objective for many paradigms, is there
a master solverfor optimization of loss?

o No (yet) such a general algorithm

e Alternating Projection:

o Most widely used
o EM, Variational EM (Variational inference), Wake-Sleep, ...

Petuum’
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P ARTirioAL WTELLIGENCE
The Teacher-Student Mechanism
min — aH(q) + D ( q(x), pg (x) ) — Eq) [f(x: - )]
when a,f > 0 and D = CE
(1) Teacher step: ~ "77===-al | Generalization of the classic
81 x) + £ ) Tt Variational EM
_ 08 P X X, . *,s
q(x) = exp{ o } /Z 4 . Generalized E-step

Support all types of experience

(2) Student step:

m‘ign Eqx) [ log pg (x)] ----- ». M-step

Petuum’ 87 g
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The Teacher-Student Mechanism

min — al(q) + D ( q(x), pg (x) ) — Eq) [f(x; . )]

when a,f > 0 and D = CE

(1) Teacher step:
] v
q(x) — exp{ ﬁ Og p@(x) + f(x )} /Z Poo ‘\\
a
(2) Student step: e e

mien IIEq(x) [ log pg (x) ]

E-step Teacher step
EM: --------- » | |Teacher-student --------- >
T Mechanism: < ""77777°

Student step

Petuum’ 88 g
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Some “advanced” (specialized) techniques

mip — H(g) +AD( 40O, Pe(®) )~ Eqeo| f00 |

e Alternating Projection:
o EM, Variational EM (Variational inference), Wake-Sleep, ...

o SGD, Back-propagation (BP)
e Convex duality, Lagrangian -- Kernel Tricks

e Integer linear programming (ILP)

o Probability functional descent (PFD) [Chu et al., 2019] -- Influence function,
gives a neat formulation of GAN-like optimization and a few others

Petuum” 89 g
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|: Duality

o Structured MaxEnt Discrimination (SMED) [Zhu and Xing, 2013]:

min — aH(q) — BE, [ logp(®) |+U(®

q, =0

s.t. —E [ AF(y;0) — AM;(y) | < & Vi

o Solve the (primal) Lagrangian:
B10g p(8) + Xy (¥ (AF;(y; 0) — AL;(¥))

a

q(0) = eXp{ } /Z(A)

o Solve Lagrangian multipliers A from the dual problem (whenp(e) = x(l0,0; U =3 ¢,)
Allows kernel trick for
™ nonlinear interactions

2
1
max z A-(y)Af-(y)——‘z 2 (AT, ()
220, YAi=1 L yeys l 2 [ Liyey; l b/w experiences

MMMMMMMMMMMMMMM
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lI: Influence Function and Probability Functional Descent

o Gradient descent in the space of probability measures P(X)

pferjlji&) I(p) 7:P(X) — R : a probability functional

e Influence function ¥, (x):

Gateaux differential of 7 at p in A1, () = fx ¥y () x (dx)

the direction y = q —p _ .
S ey = Eq[Wp (0] — Ep[¥p ()]
o With a linear approximation 7(p) to 7(p) around py:

I(p) = I(po) + dIp,(® — Po).
= [ExNP[ Yy, (x)] + const.

e Thus, once we obtain the influence function, we can optimize p by decreasing
[ExNP[ LIJPO (X) ]

Petuum’ [Chu et al., 2019] o1

MMMMMMMMMMMMMMM
UUUUUUUUUUUU
IIIIIIIIIIIIIIIIIIIIII



UCSan Diego $Fotng, wonmueo e

Adversarial learning using PFD

I(pg) = ID( pa(x), pg (x) )

e Often no closed-form influence function, e.g., when D is JSD or W-
distance

o Approximate with convex duality:
. Convex conjugate 7*(y) = sup f Y()uldx) — I(u)

- Influence function is obtalned via Wy, (x) = argmaxy, Exp, [P (x)] — T° (@)
- Parameterize ¥ as below to recover optimization of generator and discriminator

e (x) = 0.51og (1 — Cy) — 0.5 log2

¥js = argmaxy E,, [log Cqb] — Ep, [log (1-— C¢)]
o The whole optimization of J(p) is thus

ming maxE logCyl — E, |log (1 —C
Petuum’ [Chu et al., 2019] / ¢ pd“t“[ 5 ¢] pe[ 8 ( ¢)] 02 g
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b A
Other popular algorithms in the PFD view
e PFD recovers optimization procedures in some popular algorithms
Algorithm Type of derivative estimator
Generative adversarial networks : :
Minimax GAN (Goodfellow et al., 2014) Convex duality Estimation of the
Non-saturating GAN (Goodfellow et al., 2014) Binary classification influence function
Wasserstein GAN (Arjovsky et al., 2017) Convex duality
Variational inference
Black-box variational inference (Ranganath et al., 2014) Exact
Adversarial variational Bayes (Mescheder et al., 2017) Binary classification
Adversarial posterior distillation (Wang et al., 2018) Convex duality
Reinforcement learning
Policy iteration (Howard, 1960) Exact
Policy gradient (Williams, 1992) Monte Carlo
Actor-critic (Konda & Tsitsiklis, 2000; Sutton et al., 2000) Least squares
Dual actor-critic (Chen & Wang, 2016; Dai et al., 2017b) Convex duality

Petuum’ [Chu et al., 2019] %4 g
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Toward A “Standard Model” of ML

e | OSS
e EXxperience

e Optimization solver

e Model architecture
ming L(0, E)
/ /I N S -
L v X s

Optimization Loss Model Experience
solver architecture

Petuum” % Lg
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Model architecture — more in Lecture#2

o Relatively well explored:
o Neural network design
o @Graphical model design
o Compositional architectures

rgl’igl — aH(q) + ,BID)( q(x), pg (x) ) — Eq) [ f(x) ]

Next lecture: a composable catalog of building blocks g

Petuum’ 9
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Summary: A “Standard Model” of ML

o LOSS + experience
o Standard Equation (SE)

mip — Eqcay | £G6,2) |+ 6D (4. 9), po (x,3) - abi(@)

o Optimization solver
o The extended EM algorithm gives a general primal solution in many cases

o PFD gives a neat formulation for some cases (e.g., GANs)

e Model architecture: vast libraries of building blocks - compositionality

Next: practical implications of the ML “Standard Model”

Petuum’ o7
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Schedule

o Lecture#1: Theory: The Standard Model of ML
A blueprint of ML paradigms for ALL experience
(Jan 19 Thursday, 4.450m-6.150m UK Time)

o Lecture#2: Tooling: Operationalizing The Standard Model

Compose your ML solutions like playing Lego
(Jan 20 Thursday, 1:00pm-2:30pm)

o Lecture#3: Computing: Modern infrastructure for productive ML

Automatic tuning, distributing, and scheduling
(Jan 20 Thursday, 4:.45pm-6.150m)

.
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